Log in

Abstract

This paper is a brief summary of the results of long-term experimental studies of C60Hx hydrofullerites with a hydrogen content of up to x ~ 60 or more, obtained by loading C60 fullerites with hydrogen at pressures up to 9 GPa and temperatures up to 500°C. Basically, this is an overview of already published data. Some results for hydrofullerites with compositions of x ~ 60 and x ~ 90 are presented for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. E. Antonov, J. Alloys Compd. 330–332, 110 (2002). https://doi.org/10.1016/S0925-8388(01)01532-8

    Article  Google Scholar 

  2. V. E. Antonov, I. O. Bashkin, S. S. Khasanov, et al., J. Alloys Compd. 330–332, 365 (2002). https://doi.org/10.1016/S0925-8388(01)01534-1

    Article  Google Scholar 

  3. I. O. Bashkin, V. E. Antonov, A. V. Bazhenov, et al., JETP Lett. 79 (5), 226 (2004). https://doi.org/10.1134/1.1753421

    Article  CAS  Google Scholar 

  4. V. E. Antonov, I. O. Bashkin, A. V. Bazhenov, et al., Carbon 100, 465 (2016). https://doi.org/10.1016/j.carbon.2015.12.051

    Article  CAS  Google Scholar 

  5. K. P. Meletov, I. O. Bashkin, V. V. Shestakov, et al., Fullerenes, Nanotubes, Carbon Nanostruct. 16 (5–6), 593 (2008). https://doi.org/10.1080/15363830802286590

    Article  CAS  Google Scholar 

  6. A. V. Bazhenov, T. N. Fursova, I. O. Bashkin, et al., Fullerenes, Nanotubes, Carbon Nanostruct. 16 (5–6), 579 (2008). https://doi.org/10.1080/15363830802286558

    Article  CAS  Google Scholar 

  7. I. O. Bashkin, V. I. Rashchupkin, N. P. Kobelev, et al., JETP Lett. 59 (4), 279 (1994).

    Google Scholar 

  8. I. O. Bashkin, V. I. Rashchupkin, A. F. Gurov, et al., J. Phys.: Condens. Matter 6, 7491 (1994). https://doi.org/10.1088/0953-8984/6/36/028

    Article  CAS  Google Scholar 

  9. L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhkin, High Pressure Res. 24 (3), 371 (2004). https://doi.org/10.1080/08957950412331298761

    Article  CAS  Google Scholar 

  10. P. A. Heiney, J. E. Fisher, A. R. McGhie, et al., Phys. Rev. Lett. 66 (22), 2911 (1991). https://doi.org/10.1103/PhysRevLett.66.2911

    Article  CAS  Google Scholar 

  11. Yu. M. Shul’ga, A. S. Lobach, Yu. G. Morozov, et al., Zh. Fiz. Khim. 72, 115 (1998).

    Google Scholar 

  12. L. E. Hall, D. R. Mckenzie, M. I. Attalla, et al., J. Phys. Chem. 97 (21), 5741 (1993). https://doi.org/10.1021/j100123a046

    Article  CAS  Google Scholar 

  13. A. I. Kolesnikov, V. E. Antonov, I. O. Bashkin, et al., J. Phys.: Condens. Matter 9, (13), 2831 (1997). https://doi.org/10.1088/0953-8984/9/13/022

    Article  CAS  Google Scholar 

  14. V. F. Sears, Neutron News 3 (3), 26 (1992). https://doi.org/10.1080/10448639208218770

    Article  Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1965).

    Google Scholar 

  16. P. J. R. Honeybone, R. J. Newport, W. S. Howells, et al., Chem. Phys. Lett. 180 (3), 145 (1991). https://doi.org/10.1016/0009-2614(91)87131-T

    Article  CAS  Google Scholar 

  17. W. S. Howells, P. J. R. Honeybone, R. J. Newport, et al., Physica B 180–181, 787 (1992). https://doi.org/10.1016/0921-4526(92)90468-8

    Article  Google Scholar 

  18. R. Bini, J. Ebenhoch, M. Fanti, et al., Chem. Phys. 232 (1–2), 75 (1998). https://doi.org/10.1016/S0301-0104(98)00035-4

    Article  CAS  Google Scholar 

  19. L. D. Bulusheva, A. V. Okotrub, A. V. Antich, and A. S. Lobach, J. Mol. Struct. 562, 119 (2001). https://doi.org/10.1016/S0022-2860(00)00862-0

    Article  CAS  Google Scholar 

  20. A. P. Ramirez, R. C. Haddon, O. Zhou, et al., Science 265, 84 (1994). https://doi.org/10.1126/science.265.5168.84

    Article  CAS  Google Scholar 

  21. Q. W. Lee and C. E. Lee, Phys. Rev. Lett. 106, 166402 (2011). https://doi.org/10.1103/PhysRevLett.106.166402

    Article  CAS  Google Scholar 

  22. Y. -K. Choi, J. -H. Cho, B. Sanyal, and G. Bihlmayer, Phys. Rev. B 86, 081415(R) (2012). https://doi.org/10.1103/PhysRevB.86.081415

    Article  CAS  Google Scholar 

  23. P. -M. Allemand, K. C. Khemani, A. Koch, et al., Science 253, 301 (1991). https://doi.org/10.1126/science.253.5017.301

    Article  CAS  Google Scholar 

  24. T. Kambe, Y. Nagami, and K. Oshima, Phys. Rev. B 61 (2), R862 (2000). https://doi.org/10.1103/PhysRevB.61.R862

    Article  CAS  Google Scholar 

  25. A. F. Skryshevskii, Structural Analysis of Liquids (Vysshaya Shkola, Moscow, 1971), p. 57 [in Russian].

    Google Scholar 

  26. V. E. Antonov, A. I. Davydov, V. K. Fedotov, et al., Phys. Rev. B 80 (13), 134302 (2009). https://doi.org/10.1103/PhysRevB.80.134302

    Article  CAS  Google Scholar 

  27. A. I. Kolesnikov, V. E. Antonov, I. O. Bashkin, et al., Physica B 263–264, 436 (1999). https://doi.org/10.1016/S0921-4526(98)01403-3

    Article  Google Scholar 

  28. Yu. V. Vasil’ev, S. G. Kotsiris, I. O. Bashkin, et al., J. Phys. Chem. B 109 (24), 11875 (2005). https://doi.org/10.1021/jp0517302

    Article  CAS  Google Scholar 

  29. A. Webster, Nature 352, 412 (1991). https://doi.org/10.1038/352412a0

    Article  CAS  Google Scholar 

  30. C. R. Stoldt, R. Maboudian, and C. Carraro, Astrophys. J. 548, L225 (2001). https://doi.org/10.1086/319112

    Article  CAS  Google Scholar 

  31. J. J. Diaz-Luis, D. A. Garcia-Hernandez, A. Manchado, and F. Cataldo, Astron. Astrophys. 589, A5 (2016). https://doi.org/10.1051/0004-6361/201527222

    Article  CAS  Google Scholar 

  32. Y. Zhang, S. Sadjadi, C. -H. Hsia, and S. Kwok, Astrophys. J. 845, 76 (2017). https://doi.org/10.3847/1538-4357/aa71ac

    Article  CAS  Google Scholar 

  33. A. Webster, Mon. Not. R. Astron. Soc. 264 (1), 121 (1993). https://doi.org/10.1093/mnras/264.1.12

    Article  CAS  Google Scholar 

Download references

Funding

Studies of hydrofullerites at the Institute of Solid State Physics of the Russian Academy of Sciences were partially supported by the Presidium of the Russian Academy of Sciences within the Programs “Matter under High Pressure” and “Physics of Condensed Media and New-Generation Materials”. The work of A.I. Kolesnikov was supported by the Department of Research of the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Bazhenov or T. N. Fursova.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, V.E., Bazhenov, A.V., Bashkin, I.O. et al. High-Pressure Hydrofullerites. J. Surf. Investig. 14, 995–1002 (2020). https://doi.org/10.1134/S1027451020050237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020050237

Keywords:

Navigation