Log in

Absorption Spectrum of Pure H2S in the 6227.506–6236.844 and 6244.188–6245.348 cm−1 Ranges: Absorption Line Positions and Intensities, Self-Broadening and Self-Shift Coefficients

  • SPECTROSCOPY OF AMBIENT MEDIUM
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The absorption spectrum of the H2S molecule is recorded with high spectral resolution (0.00016 cm−1) and threshold sensitivity (∼1E-26 cm/molec.) in the 6227.506–6236.844 and 6244.188–6245.348 cm−1 spectral ranges at room temperature and pressures of 0.001–0.06 atm for the first time. The measurements were performed at the General Physics Institute, Russian Academy of Sciences, at a high-sensitivity high-resolution diode laser spectrometer with a signal-to-noise ratio of more than 10 000. Line center shift coefficients Δ0/P and collisional widths Γ2/P are estimated for the first time; new spectral lines have been recorded. The experimentally estimated line centers differ from the calculated positions of line centers in the HITRAN database by Δν = (νH − νexp) × 103 cm−1 ≈ 0.001–0.01 cm−1. The intensity estimates coincide much worse, the relative differences 100% × (SHSexp)/SH amount to tens of percent; the intensities of five lines differ by hundreds of percent or more.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. V. V. Lagutin, “Protection of the atmosphere at acid gas production and processing facilities,” Sovremennye Naukoemkie Tekhnologii, No. 3, 61–62 (2005).

    Google Scholar 

  2. R. A. Marriott, P. Pirzadeh, J. J. Marrugo-Hernandez, and S. Raval, “Hydrogen sulfide formation in oil and gas,” Can. J. Chem. 94 (4), 406–413 (2015).

    Article  Google Scholar 

  3. R. A. Gabibov and A. M. Telyatnikova, “Hydrogen sulfide generation in sewers and the consequences of its release into the environment,” Molodoi Uchenyi 311 (21), 463–465 (2020).

    Google Scholar 

  4. T. Ausma and L. J. De Kok, “Atmospheric H2S: Impact on plant functioning,” Front. Plant Sci. 10, 743 (2019).

    Article  Google Scholar 

  5. E. Disbrow, K. Y. Stokes, C. Ledbetter, J. Patterson, R. Kelley, S. Pardue, T. Reekes, L. Larmeu, V. Batra, Sh. Yuan, U. Cvek, M. Trutschl, Ph. Kilgore, J. S. Alexander, and C. Kevil, “Plasma hydrogen sulfide: A biomarker of Alzheimer’s disease and related dementias,” Alzheimer’s & Dementia 8 (17), 1391–1402 (2021).

    Article  Google Scholar 

  6. S. C. Peck, K. Denger, A. Burrichter, and D. Schleheck, “A glycyl radical enzyme enables hydrogen sulfide production by the human intestinal bacterium Bilophila wadsworthia,” Proc. Natl. Acad. Sci. U.S.A. 116 (8), 3171–3176 (2019).

    Article  ADS  Google Scholar 

  7. I. E. Gordon, L. S. Rothman, R. J. Hargreaves, R. Hashemi, E. V. Karlovets, F. M. Skinner, E. K. Conway, C. Hill, R. V. Kochanov, Y. Tan, P. Wcislo, A. A. Finenko, K. Nelson, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, A. Coustenis, B. J. Drouin, J. -M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, E. J. Mlawer, A. V. Nikitin, V. I. Perevalov, M. Rotger, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, E. M. Adkins, A. Baker, A. Barbe, E. Cane, A. G. Csaszar, A. Dudaryonok, O. Egorov, A. J. Fleisher, H. Fleurbaey, A. Foltynowicz, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, V.-M. Horneman, X. Huang, T. Karman, J. Karns, S. Kassi, I. Kleiner, V. Kofman, F. Kwabia-Tchana, N. N. Lavrentieva, T. J. Lee, D. A. Long, A. A. Lukashevskaya, O. M. Lyulin, V. Yu. Makhnev, W. Matt, S. T. Massie, M. Melosso, S. N. Mikhailenko, D. Mondelain, Z. D. Reed, M. Rey, C. Richard, R. Tobias, I. Sadiek, D. W. Schwenke, E. Starikova, K. Sung, F. Tamassia, S. A. Tashkun, AuweraJ. Vander, I. A. Vasilenko, A. A. Vigasin, G. L. Villanueva, B. Vispoel, G. Wagner, A. Yachmenev, and S. N. Yurchenko, “The HITRAN2020 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 277, 107949 (2022).

    Article  Google Scholar 

  8. V. A. Kapitanov, K. Yu. Osipov, A. E. Protasevich, Yu. N. Ponomarev, and Ya. Ya. Ponurovskii, “Dicke narrowing, pressure dependence, and mixing of self-broadened CO2 absorption lines in the 30013 ← 00001 band: Measurements and line profile testing,” Atmos. Ocean. Opt. 34 (5), 381–389 (2021).

    Article  Google Scholar 

  9. V. A. Kapitanov, Ya. Ya. Ponurovskii, K. Yu. Osipov, and Yu. N. Ponomarev, “Pure NH3 spectrum measurements and analysis of overlap** absorption lines in the 6611.6–6613.5 cm–1 region,” Atmos. Ocean. Opt. 36 (1), 7–13 (2023).

    Article  Google Scholar 

  10. J.-M. Hartmann, H. Tran, R. Armante, C. Boulet, A. Campargue, F. Forget, L. Gianfrani, I. Gordon, S. Guerlet, M. Gustafsson, J. T. Hodges, S. Kassi, D. Lisak, F. Thibault, and G. C. Toon, “Recent advances in collisional effects on spectra of molecular gases and their practical consequences,” J. Quant. Spectrosc. Radiat. Transfer 213, 178–227 (2018).

    Article  ADS  Google Scholar 

  11. K. L. Chubb, O. Naumenko, S. Keely, B. Sebestiano, S. Macdonald, M. Mukhtar, A. Grachov, J. White, E. Coleman, A. Liu, A. Z. Fazliev, E. R. Polovtseva, V.-M. Horneman, A. Campargue, T. Furtenbacher, A. G. Csaszar, S. N. Yurchenko, and J. Tennyson, “Marvel analysis of the measured high-resolution rovibrational spectra of H2 32S,” J. Quant. Spectrosc. Radiat. Transfer 218, 178–186 (2018).

    Article  ADS  Google Scholar 

  12. E. R. Polovtseva, N. A. Lavrentiev, S. S. Voronina, O. V. Naumenko, and A. Z. Fazliev, “Information system for molecular spectroscopy. 5. Ro-vibrational transitions and energy levels of the hydrogen sulfide molecule,” Atmos. Ocean. Opt. 25 (2), 157–165 (2012).

    Article  Google Scholar 

  13. S. N. Mikhailenko, Yu. L. Babikov, and V. F. Golovko, “Information-calculating system Spectroscopy of Atmospheric Gases. The structure and main functions,” Atmos. Ocean. Opt. 18 (9), 685–695 (2005).

    Google Scholar 

  14. F. Rohart, H. Mader, and H.-W. Nikolaisen, “Speed dependence of rotational relaxation induced by foreign gas collisions: Studies on CH3F by millimeter wave coherent transients,” J. Chem. Phys. 101, 6475–6486 (1994).

    Article  ADS  Google Scholar 

  15. F. Roharf, A. Ellendt, F. Kaghat, and H. Mader, “Self and polar foreign gas line broadening and frequency shifting of CH3F: Effect of the speed dependence observed by millimeter-wave coherent transients,” J. Mol. Spectrosc. 185, 222–233 (1997).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to O.V. Naumenko and S.N. Mikhailenko for useful consultations, as well as to the staff of St. Petersburg State University, Institute of Applied Physics, Russian Academy of Sciences, and the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, for the possibility of working with W@DIS distributed information system (https://wadis.saga.iao.ru), which provided significant assistance in systematizing and estimating the reliability of literature molecular spectroscopy data.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Kapitanov or Ya. Ya. Ponurovskii.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapitanov, V.A., Ponurovskii, Y.Y. Absorption Spectrum of Pure H2S in the 6227.506–6236.844 and 6244.188–6245.348 cm−1 Ranges: Absorption Line Positions and Intensities, Self-Broadening and Self-Shift Coefficients. Atmos Ocean Opt 37, 151–161 (2024). https://doi.org/10.1134/S1024856024700180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856024700180

Keywords:

Navigation