Log in

Statistical Analysis for Parameters of Specularly Reflective Layers in High-Level Clouds over Western Siberia Based on MODIS Data

  • REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of applying the algorithm for detecting specularly reflective layers in high-level clouds based on passive satellite data are presented. We consider cirrus clouds with an optical thickness of less than 5 m and an top altitude of more than 8300 m consisting of horizontally oriented ice crystals, observed over the territory of Western Siberia from 2006 to 2007. The technique for detecting specularly reflecting layers in high-level clouds is described and the statistical analysis of their parameters is performed on the basis of spectroradiometer MODIS satellite data. We discuss the seasonal and latitudinal properties of the parameters of considered clouds over Western Siberia. The typical values of the area, altitude, reflection ratio, and effective emissivity of specularly reflecting layers over different latitudinal zones of the region under study are estimated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. P. Ceppi, F. Brient, M. D. Zelinka, and D. L. Hartmann, “Cloud feedback mechanisms and their represenation in global climate models,” WIREs Clim. Change 8, e465 (2017).

    Article  Google Scholar 

  2. U. Lohmann and D. Neubauer, “The importance of mixed-phase and ice clouds for climate sensitivity in the global aerosol-climate model ECHAM6-HAM2,” Atmos. Chem. Phys. 18, 8807–8828 (2018).

    Article  ADS  Google Scholar 

  3. A. Voigt, N. Albern, P. Ceppi, K. Grise, Y. Li, and B. Medeiros, “Clouds, radiation, and atmospheric circulation in the present-day climate and under climate change,” WIREs Clim. Change 12, e694 (2021).

    Article  Google Scholar 

  4. Clouds and Cloudy Atmosphere. Handbook, Ed. by I.P. Mazin and A.Kh. Khrgian (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  5. B. A. Baum, P. Yang, A. J. Heymsfield, A. Bansemer, B. H. Cole, A. Merrelli, C. Schmitt, and C. Wang, “Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 μm,” J. Quant. Spectrosc. Radiat. Transfer 146, 123–139 (2014).

    Article  ADS  Google Scholar 

  6. C. M. R. Platt, “Some microphysical properties of an ice cloud from lidar observation of horizontally oriented crystals,” J. Appl. Meteorol. 17, 1220–1224 (1978).

    Article  ADS  Google Scholar 

  7. Yu. S. Balin, B. V. Kaul’, and G. P. Kokhanenko, “Observations of specularly reflective particles and layers in crystal clouds,” Opt. Atmos. Okeana 24 (4), 293–299 (2011).

    Google Scholar 

  8. I. V. Samokhvalov, B. V. Kaul’, S. V. Nasonov, I. V. Zhivotenyuk, and I. D. Bryukhanov, “Backscattering matrix of the mirror-reflecting upper-level cloud layers formed by horizontally oriented crystal particles,” Opt. Atmos. Okeana 25 (5), 403–411 (2012).

    Google Scholar 

  9. A. Konoshonkin, A. Borovoi, N. Kustova, H. Okamoto, H. Ishimoto, Y. Grynko, and J. Forstner, “Light scattering by ice crystals of cirrus clouds: from exact numerical methods to physical-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 195, 132–140 (2017).

    Article  ADS  Google Scholar 

  10. B. V. Kaul’ and I. V. Samokhvalov, “Orientation of particles in Ci crystal clouds. Part 1. Orientation at gravitational sedimentation,” Atmos. Ocean. Opt. 18 (11), 866–870 (2005).

    Google Scholar 

  11. K. Sassen, “The polarization lidar technique for cloud research: A review and current assessment,” Bull. Am. Meteorol. Soc. 72 (12), 1848–1866 (1991).

    Article  ADS  Google Scholar 

  12. G. P. Kokhanenko, Y. S. Balin, M. G. Klemasheva, S. V. Nasonov, M. M. Novoselov, I. E. Penner, and S. V. Samoilova, “Scanning polarization lidar LOSA-M3: Opportunity for research of crystalline particle orientation in the clouds of upper layers,” Atmos. Meas. Tech. 13 (3), 1113–1127 (2020).

    Article  Google Scholar 

  13. R. R. Neely, M. Hayman, R. Stillwell, J. P. Thayer, R. M. Hardesty, M. O’Neill, M. D. Shupe, and C. Alvarez, “Polarization lidar at Summit, Greenland, for the detection of cloud phase and particle orientation,” J. Atmos. Ocean. Technol. 30 (8), 1635–1655 (2013).

    Article  ADS  Google Scholar 

  14. D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, and K. A. Powell, “Overview of the CALIPSO mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).

    Article  ADS  Google Scholar 

  15. K. Sassen, V. K. Kayetha, and J. Zhu, “Ice cloud depolarization for nadir and off-nadir CALIPSO measurements,” Geophys. Rev. Lett. 39, L20805 (2012).

  16. A. V. Skorokhodov and A. V. Konoshonkin, “Comparison of satellite active and passive observations of specularly reflecting layers in the high-level clouds,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 18 (3), 279–287 (2021).

    Article  Google Scholar 

  17. Yu. L. Matveev, L. T. Matveev, and S. A. Soldatenko, Global Cloud Field (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  18. S. A. Ackerman, R. Frey, A. Heidinger, Y. Li, A. Walther, S. Platnick, K. G. Meyer, G. Wind, N. Amarasinghe, C. Wang, B. Marchant, R. Holz, S. Dutcher, and P. Hubanks, EOS MODIS and SNPP VIIRS Cloud Properties: User Guide for the Climate Data Record Continuity Level-2 Cloud Top and Optical Properties Product (CLDPROP) (NASA, Greenbelt, USA, 2019).

    Google Scholar 

  19. M. A. Avery, R. A. Ryan, B. J. Getzewich, M. A. Vaughan, D. M. Winker, Y. Hu, A. Garnier, J. Pelon, and C. A. Verhappen, “CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles,” Atmos. Meas. Tech. 13, 4539–4563 (2020).

    Article  Google Scholar 

  20. KN-01 SYNOP. Code for Operational Transmission of Surface Meteorological Observation Data from the Roshydromet Station Network, Ed. by N.P. Fakhrutdinov (Gidromettsentr Rossii, Moscow, 2013) [in Russian].

    Google Scholar 

  21. A. V. Skorokhodov, S. V. Nasonov, and A. V. Konoshonkin, “Comparison of passive satellite data with ground-based lidar observations of specularly reflecting layers in high-level clouds,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 16 (6), 263–271 (2019).

    Article  Google Scholar 

  22. V. Noel and H. Chepfer, “A global view of horizontally oriented crystals in ice clouds from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO),” J. Geophys. Res. 115 (23), D00 (2010).

    Article  Google Scholar 

  23. C. Zhou, P. Yang, A. E. Dessler, and F. Liang, “Statistical properties of horizontally oriented plates in optically thick clouds from satellite observations,” Geosci. Remote Sens. Lett. 10, 986–990 (2013).

    Article  ADS  Google Scholar 

  24. M. Kikuchi, H. Okamoto, and K. Sato, “A climatological view of horizontal ice plates in clouds: Findings from nadir and off-nadir CALIPSO observations,” J. Geophys. Res.: Atmos. 126, e2020JD033562 (2021).

  25. Yu. P. Perevedentsev, I. I. Mokhov, and A. V. Eliseev, The General Atmospheric Circulation Theory, Ed. by E.P. Naumov (Kazan University, Kazan, 2013) [in Russian].

    Google Scholar 

  26. S. Bony, B. Stevens, D. M. W. Frierson, C. Jakob, M. Kageyama, R. Pincus, T. G. Shepherd, S. C. Sherwood, A. P. Siebesma, A. H. Sobel, M. Watanabe, and M. J. Webb, “Clouds, circulation and climate sensitivity,” Nat. Geosci. 8, 261–268 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

The analysis of the variability of characteristics of specularly reflective layers in high-level clouds was supported by the Russian Science Foundation (grant no. 21-77-10 089). The study of features of cloud parameters over Western Siberia was supported by the Ministry of Science and Higher Education of the Russian Federation (V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Skorokhodov or A. V. Konoshonkin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skorokhodov, A.V., Konoshonkin, A.V. Statistical Analysis for Parameters of Specularly Reflective Layers in High-Level Clouds over Western Siberia Based on MODIS Data. Atmos Ocean Opt 35 (Suppl 1), S58–S63 (2022). https://doi.org/10.1134/S1024856023010153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023010153

Keywords:

Navigation