Log in

Generation of Streamers in an Inhomogeneous Electric Field under Low Air Pressure

  • OPTICAL INSTRUMENTATION
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The conditions for generation of red streamers at an atmospheric air pressure of 0.1–10 Torr are experimentally studied. Streamers of tens of centimeters in length are generated from the plasma of an electrodeless capacitive discharge under low pressures. A discharge between metal small-curvature electrodes transforms into a stationary mode, where streamers are not generated, as the pressure and voltage increase. An ICCD camera allowed us to ascertain that the streamers start from the positive-polarity electrode. The color of the discharge plasma depends on the air pressure in pulsed and continuous discharges and is most consistent in color with red sprites at a pressure of ∼1 Torr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. D. L. Hampton, M. J. Heavner, E. M. Wescott, and D. D. Sentman, “Optical spectral characteristics of sprites,” Geophys. Rev. Lett. 23 (1), 89–92 (1996).

    Article  ADS  Google Scholar 

  2. R. A. Armstrong, D. M. Suszcynsky, W. A. Lyons, and T. E. Nelson, “Multi-color photometric measurements of ionization and energies in sprites,” Geophys. Rev. Lett. 27 (5), 653–656 (2000).

    Article  ADS  Google Scholar 

  3. V. P. Pasko, “Red sprite discharges in the atmosphere at high altitude: The molecular physics and the similarity with laboratory discharges,” Plasma Sources Sci. Technol. 16, 13 (2007). https://doi.org/10.1088/0963-0252/16/1/S02

  4. E. Williams, C. L. Kuo, J. Bor, G. Satori, R. Newsome, T. Adachi, R. Boldi, A. Chen, E. Downes, R. R. Hsu, and W. Lyons, “Resolution of the sprite polarity paradox: The role of halos,” Radio Sci. 47, RS2002 (2012). https://doi.org/10.1029/2011RS004794

    Article  ADS  Google Scholar 

  5. E. R. Williams, “Sprites, elves and glow discharge tubes,” Phys. Today 54 (11), 41–47 (2001).

    Article  Google Scholar 

  6. D. F. Opaits, M. N. Shneider, P. J. Howard, R. B. Miles, and G. M. Milikh, “Analysis of UV flashes of millisecond scale detected by a low-orbit satellite,” Geophys. Rev. Lett. 37, L14801 (2010). https://doi.org/10.1029/2010GL043996

    Article  ADS  Google Scholar 

  7. F. C. Parra-Rojas, M. Passas, E. Carrasco, A. Luque, I. Tanarro, M. Simek, and F. J. Gordillo-Vazquez, “Spectroscopic diagnostics of laboratory air plasmas as a benchmark for spectral rotational (gas) temperature determination in TLEs,” J. Geophys. Res.: Space Phys. 118, 4649–4661 (2013). 2013https://doi.org/10.1002/jgra.50433

  8. V. P. Pasko, Y. Yair, and C. L. Kuo, “Lightning related transient luminous events at high altitude in the Earth’s atmosphere: Phenomenology, mechanisms and effects,” Space Sci. Rev. 168 (1), 475–516 (2012). https://doi.org/10.1007/s11214-011-9813-9

    Article  ADS  Google Scholar 

  9. A. Huang, G. Lu, J. Yue, W. Lyons, F. Lucena, F. Lyu, S. A. Cummer, W. Zhang, L. Xu, X. Xue, and S. Xu, “Observations of red sprites above hurricane Matthew,” Geophys. Rev. Lett. 45 (13), 158–165 (2018). https://doi.org/10.1029/2018GL079576

    Article  Google Scholar 

  10. T. Neubert, N. Østgaard, V. Reglero, E. Blanc, O. Chanrion, C. A. Oxborrow, A. Orr, M. Tacconi, O. Hartnack, and D. D. Bhanderi, “The ASIM mission on the International Space Station,” Space Sci. Rev. 215 (2), 1–17 (2019). https://doi.org/10.1007/s11214-019-0592-z

    Article  Google Scholar 

  11. J. Qin, S. Celestin, V. P. Pasko, S. A. Cummer, M. G. McHarg, an H. C. Stenbaek-Nielsen, “Mechanism of column and carrot sprites derived from optical and radio observations,” Geophys. Rev. Lett. 40 (17), 4777–4782 (2013).

    Article  ADS  Google Scholar 

  12. Sprites, Elves and Intense Lightning Discharges, Ed. by M. Füllekrug, E. A. Mareev, and M. J. Rycroft (Springer Science & Business Media, Netherlands, 2006).

    Google Scholar 

  13. N. A. Zabotin and J. W. Wright, “Role of meteoric dust in sprite formation,” Geophys. Rev. Lett. 28 (13), 2593–2596 (2001).

    Article  ADS  Google Scholar 

  14. V. Tarasenko, N. Vinogradov, D. Beloplotov, A. Burachenko, M. Lomaev, and D. Sorokin, “Influence of nanoparticles and metal vapors on the color of laboratory and atmospheric discharges,” Nanomaterials 12 (4), 652 (2022). https://doi.org/10.3390/nano12040652

    Article  Google Scholar 

  15. E. A. Sosnin, N. Yu. Babaeva, A. V. Kozyrev, V. Yu. Kozhevnikov, G. V. Naidis, V. S. Skakun, V. A. Panarin, and V. F. Tarasenko, “Modeling of transient luminous events in Earth’s middle atmosphere with apokamp discharge,” Phys. Usp. 64 (2021). https://doi.org/10.3367/UFNe.2020.03.038735

  16. T. M. P. Briels, E. M. van Veldhuizen, and U. Ebert, “Positive and negative streamers in ambient air: Measuring diameter, velocity and dissipated energy,” J. Phys. D: Appl. Phys. 41 (23), 234008 (2008). https://doi.org/10.1088/0022-3727/41/23/234008

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to D.S. Pechenitsyn for creation of the high-voltage power supplies.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2021-1026, November 15, 2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Kh. Baksht, N. P. Vinogradov or V. F. Tarasenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baksht, E.K., Vinogradov, N.P. & Tarasenko, V.F. Generation of Streamers in an Inhomogeneous Electric Field under Low Air Pressure. Atmos Ocean Opt 35 (Suppl 1), S159–S164 (2022). https://doi.org/10.1134/S1024856023010025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856023010025

Keywords:

Navigation