Log in

Surface Degradation of Lithium–Manganese Spinel in Contact with Lithium-Hexafluorophosphate-Containing Electrolyte Solution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A set of computational and experimental methods is used in the study of chemical side interactions in the LiMn2O4-based lithium-ion cathodic half-cell over the 25–60°C temperature range. The degradation of LiMn2O4-spinel-based electrodes is shown to start upon the LiMn2O4 granules contacting the standard (basic) electrolyte solution (1 m LiPF6 in a mixture of ethylene carbonate and dimethyl carbonate (1 : 1, by wt)). It is established that under current-less conditions, the degradation of the LiMn2O4-based electrode is caused by the mutual thermodynamic instability between LiMn2O4 and the LiPF6 lithium salt. The equilibrium interaction products are determined, and the mechanism of the critical temperature influence on the degradation of lithium-ion batteries with lithium–manganese spinel is refined. A model is proposed for the primary surface layer at the LiMn2O4/electrolyte interface formation and evolution, which explains the distinctive features of the degradation processes in this system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. Cui, X., Feng, H., Liu, J., Tang, F., and Li, H., Porous LiMn2O4 nano-microspheres as durable high power cathode materials for lithium ion batteries, Russ. J. Electrochem., 2019, vol. 55, p. 531. https://doi.org/10.1134/S1023193519040037

    Article  Google Scholar 

  2. Blomgren, G.E., The development and future of lithium ion batteries, J. Electrochem. Soc., 2017, vol. 164, no. 1, p. A5019. https://doi.org/10.1149/2.0251701jes

    Article  CAS  Google Scholar 

  3. Schmuch, R., Wagner, R., Hörpel, G., Placke, T., and Winter, M., Performance and cost of materials for lithium-based rechargeable automotive batteries, Nat. Energy, 2018, vol. 3, no. 4, p. 267. https://doi.org/10.1038/s41560-018-0107-2

    Article  CAS  Google Scholar 

  4. Julien, C.M., Mauger, A., Zaghib, K., and Groult, H., Comparative issues of cathode materials for Li-ion batteries, Inorganics, 2014, vol. 2, p. 132. https://doi.org/10.3390/inorganics2010132

    Article  CAS  Google Scholar 

  5. Kulova, T.L. and Skundin, A.M., Temperature effects on the performance of lithium-ion and sodium-ion batteries, Russ. J. Electrochem., 2021, vol. 57, p. 700. https://doi.org/10.1134/S1023193521070089

    Article  CAS  Google Scholar 

  6. Huang, Y., Dong, Y., Li, S., Lee, J., Wang, C., Zhu, Z., Xue, W., Li, Y., and Li, J., Lithium manganese spinel cathodes for lithium-ion batteries, Adv. Energy Mater., 2020, vol. 11, no. 2, 2000997. https://doi.org/10.1002/aenm.202000997

    Article  CAS  Google Scholar 

  7. Nitta, N., Wu, F., Lee, J.T., and Yushin, G., Li-ion battery materials: present and future, Mater. Today, 2015, vol. 18, no. 5, p. 252. https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  8. Winter, M., Besenhard, J.O., Spahr, M.E., and Novák, P., Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 1998, vol. 10, no. 10, p. 725. https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  9. Daniel, C., Mohanty, D., Li, J., and Wood, D.L., Cathode materials review, AIP Conf. Proc.: AIP Publising LLC, 2014, vol. 1597, p. 26. https://doi.org/10.1063/1.4878478

    Book  Google Scholar 

  10. Li, J., Fleetwood, J., Hawley, W.B., and Kays, W., From materials to cell: State-of-the-art and prospective technologies for lithium-ion battery electrode processing, Chem. Rev., 2022, vol. 122, p. 903. https://doi.org/10.1021/acs.chemrev.1c00565

    Article  CAS  PubMed  Google Scholar 

  11. Molenda, J., Electronic limitations of lithium diffusibility. From layered and spinel toward novel olivine type cathode materials, Solid State Ionics, 2005, vol. 176, p. 1687. https://doi.org/10.1016/j.ssi.2005.04.018

    Article  CAS  Google Scholar 

  12. Shimakawa, Y., Numata, T., and Tabuchi, J., Verwey-type transition and magnetic properties of the LiMn2O4 spinels, J. Solid State Chem., 1997, vol. 131, p. 138. https://doi.org/10.1006/jssc.1997.7366

    Article  CAS  Google Scholar 

  13. Pillot, C., The rechargeable battery market and main trends 2014–2025, 33rd Annual International Battery Seminar and Exhibit, Fort Lauderdale, FL, 2017, Presentation. http://cii-resource.com/cet/FBC-TUT8/ Presentations/Pillot_Christophe.pdf

  14. **a, Y., Zhou, Y., and Yoshio, M., Capacity fading on cycling of 4 V Li/LiMn2O4 cells, J. Electrochem. Soc., 1997, vol. 144, no. 8, p. 2593. https://doi.org/10.1149/1.1837870

    Article  CAS  Google Scholar 

  15. Mauger, A. and Julien, C.M., Surface modifications of electrode materials for lithium-ion batteries: status and trends, Ionics, 2014, vol. 20, p. 751. https://doi.org/10.1007/s11581-014-1131-2

    Article  CAS  Google Scholar 

  16. Blyr, A., Sigala, C., Amatucci, G., Guymard, D., Chabre, Y., and Tarascon, J.-M., Self-discharge of LiMn2O4/C Li-ion cells in their discharged state, J. Electrochem. Soc., 1998, vol. 145, no. 1, p. 194. https://doi.org/10.1149/1.1838235

    Article  CAS  Google Scholar 

  17. Choa, J. and Thackeray, M.M., Structural changes of LiMn2O4 spinel electrodes during electrochemical cycling, J. Electrochem. Soc., 1999, vol. 146, no. 10, p. 3577. https://doi.org/10.1149/1.1392517

    Article  Google Scholar 

  18. Bhandari, A. and Bhattacharya, J., Manganese dissolution from spinel cathode: few unanswered questions, J. Electrochem. Soc., 2016, vol. 164, p. A106. https://doi.org/10.1149/2.0101614jes

    Article  CAS  Google Scholar 

  19. Kumagai, N., Komaba, S., Kataoka, Y., and Koyanagi, M., Electrochemical behavior of graphite electrode for lithium ion batteries in Mn and Co additive electrolytes, Chem. Lett., 2000, vol. 29, p. 1154. https://doi.org/10.1246/cl.2000.1154

    Article  Google Scholar 

  20. Edström, K., Gustafsson, T., and Thomas, J.O., The cathode–electrolyte interface in the Li-ion battery, Electrochim. Acta, 2004, vol. 50, p. 397. https://doi.org/10.1016/j.electacta.2004.03.049

    Article  CAS  Google Scholar 

  21. **ao, X., Liu, Z., Baggetto, L., Veith, G.M., More, K.L., and Unocic, R.R., Unraveling manganese dissolution/deposition mechanisms on the negative electrode in lithium ion batteries, Phys. Chem. Chem. Phys., 2014, vol. 16, no. 22, p. 10398. https://doi.org/10.1039/c4cp00833b

    Article  CAS  PubMed  Google Scholar 

  22. Shin, H., Park, J., Sastry, A.M., & Lu, W., Degradation of the solid electrolyte interphase induced by the deposition of manganese ions, J. Power Sources, 2015, vol. 284, p. 416. https://doi.org/10.1016/j.jpowsour.2015.03.039

    Article  CAS  Google Scholar 

  23. Jayawardana, C., Rodrigo, N., Parimalam, B., and Lucht, B.L., Role of electrolyte oxidation and difluorophosphoric acid generation in crossover and capacity fade in lithium ion batteries, ACS Energy Lett., 2021, vol. 6, no. 11, p. 3788. https://doi.org/10.1021/acsenergylett.1c01657

    Article  CAS  Google Scholar 

  24. Gauthier, N., Courreges, C., Demeaux, J., Tessier, C., and Martinez, H., Impact of the cycling temperature on electrode/electrolyte interfaces within Li4Ti5O12 vs LiMn2O4 cells, J. Power Sources, 2020, vol. 448, 227573. https://doi.org/10.1016/j.jpowsour.2019.227573

    Article  CAS  Google Scholar 

  25. Lee, Y.K., Park, J., and Lu, W.A., Comprehensive study of manganese deposition and side reactions in Li-ion battery electrodes, J. Electrochem. Soc., 2017, vol. 164, p. A2812. https://doi.org/10.1149/2.1851712jes

    Article  CAS  Google Scholar 

  26. Xu, K., Electrolytes and interphases in li-ion batteries and beyond, Chem. Rev., 2014, vol. 114, p. 11503. https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  27. Gieu, J.B., Winkler, V., Courrèges, C., El Ouatani, L., Tessier, C., and Martinez, H., New insights into the characterization of the electrode/electrolyte interfaces within LiMn2O4/Li4Ti5O12 cells, by X-ray photoelectron spectroscopy, scanning Auger microscopy and time-of-flight secondary ion mass spectrometry, J. Mater. Chem. A, 2017, vol. 5, no. 29, p. 15315. https://doi.org/10.1039/C7TA02529G

    Article  CAS  Google Scholar 

  28. Lee, Y. K., Park, J., and Lu, W., A comprehensive experimental and modeling study on dissolution in li-ion batteries, J. Electrochem. Soc., 2019, vol. 166, p. A1340. https://doi.org/10.1149/2.0111908jes

    Article  CAS  Google Scholar 

  29. Kim, D., Park, S., Chae, O.B., Ryu, J.H., Kim, Y.U., Yin, R.Z., and Oh, S. M., Re-deposition of manganese species on spinel LiMn2O4 electrode after Mn dissolution, J. Electrochem. Soc., 2012, vol. 159, p. A193. https://doi.org/10.1149/2.003203jes

    Article  CAS  Google Scholar 

  30. Sycheva, V.O. and Churikov, A.V., Lithium-manganese spinels: ways to increase stability and energy capacity, Electrokhimicheskaya energetika (in Russian), 2009, vol. 9, no. 4, p. 175.]

  31. Banerjee, A., Shilina, Y., Ziv, B., Ziegelbauer, J.M., Luski, S., Aurbach, D., and Halalay, I. C., Review—Multifunctional materials for enhanced Li-ion batteries durability: a brief review of practical options, J. Electrochem. Soc., 2017, vol. 164, p. A6315. https://doi.org/10.1149/2.0451701jes

    Article  CAS  Google Scholar 

  32. Xu, K., Nonaqueous liquid electrolytes for lithium-dased rechargeable batteries, Chem. Rev., 2004, vol. 104, p. 4303. https://doi.org/10.1021/cr030203g

    Article  CAS  PubMed  Google Scholar 

  33. Liu, T., Lin, L., Bi, X., Tian, L., Yang, K., Liu, J., Li, M., Chen, Z., Lu, J., Amine, K., Xu, K., and Pan, F., In situ quantification of interphasial chemistry in Li-ion battery, Nat. Nanotechnol., 2019, vol. 14, p. 50. https://doi.org/10.1038/s41565-018-0284-y

    Article  CAS  PubMed  Google Scholar 

  34. Winter, M., The solid electrolyte interphase—the most important and the least understood solid electrolyte in rechargeable Li batteries, Z. Phys. Chem., 2009, vol. 223, p. 1395. https://doi.org/10.1524/zpch.2009.6086

    Article  CAS  Google Scholar 

  35. Xu, K. and Cresce, A. v. W., Interfacing electrolytes with electrodes in Li ion batteries, J. Mat. Chem., 2011, vol. 21, p. 9849. https://doi.org/10.1039/c0jm04309e

    Article  CAS  Google Scholar 

  36. Xu, K. and Cresce, A. v. W., Li+ - solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells, J. Mater. Res., 2012, vol. 27, no. 18, p. 2327. https://doi.org/10.1557/jmr.2012.104

    Article  CAS  Google Scholar 

  37. Aurbach, D., Markovsky, B., Salitra, G., Markevich, E., Talyossef, Y., Koltypin, M., Nazar, L., Ellis, B., and Kovacheva, D., Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries, J. Power Sources, 2007, vol. 165, p. 491. https://doi.org/10.1016/j.jpowsour.2006.10.025

    Article  CAS  Google Scholar 

  38. Lei, J., Li, L., Kostecki, R., Muller, R., and McLarnon, F., Characterization of SEI layers on LiMn2O4 cathodes with in situ spectroscopic ellipsometry, J. Electrochem. Soc., 2005, vol. 152, p. A774. https://doi.org/10.1149/1.1867652

    Article  CAS  Google Scholar 

  39. Matsuo, Y., Kostecki, R., and McLarnon, F., Surface layer formation on thin-film LiMn2O4 electrodes at elevated temperatures, J. Electrochem. Soc., 2001, vol. 148, p. A687. https://doi.org/10.1149/1.1373658

    Article  CAS  Google Scholar 

  40. Amamlraj, S.F., Sharabi, R., Sclar, H., and Aurbach, D., On the Surface Chemistry of Cathode Materials in Li-Ion Batteries, in Electrolytes for Lithium and Lithium-Ion Batteries, Jow, T.R., Xu, K., Borodin, O., and Ue, M., Eds., New York: Springer Science+Bisness Media, 2014, p. 283-321. https://doi.org/10.1007/978-1-4939-0302-3_6

  41. Rodríguez - Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction, Physica B: Condens. Matter, 1993, vol. 192, nos. 1–2, p. 55. https://doi.org/10.1016/09214526(93)90108I

    Article  Google Scholar 

  42. Sinyarev, G.B., Trusov, B.G., and Slynko L.E, A universal program for determining the composition of multicomponent working fluids and calculating some thermal processes, Trudy Mos. Vyssh. Tekh. Uch. (in Russian), 1973, no. 159.

  43. Moiseev, G.K., Vatolin, N.A., Marshuk, L.A., and Ilinykh, N.I., Temperature Dependences of the Reduced Gibbs Energy of Some Inorganic Substances (Alternative Data Bank ASTRA.OWN), Yekaterinburg: Ural Branch, Rus. Acad. Sci., 1997.

    Google Scholar 

  44. Vatolin, N.A., Moiseev, GK., and Trusov, B.G., Thermodynamic Modelling in High-Temperature Inorganic Systems (in Russian), Moscow: Metallurgy, 1994.

    Google Scholar 

  45. Moiseev, G.K. and Vatolin, N.A., Some Patterns of Change and Methods for Calculating the Thermochemic Properties of Inorganic Compounds (in Russian), Yekaterinburg: Ural Branch, RAS, 2001.

  46. Moiseev, G.K. and Vyatkin, G.P., Thermodynamic Modelling in Inorganic Systems (in Russian), Chelyabinsk: South-Ural Gos. Univ., 1999.

    Google Scholar 

  47. Kubash’evsky, O. and Olkock, S.B., Metallurgical Thermochemistry (in Russian), Moscow: Metallurgy, 1982.

    Google Scholar 

  48. Yokokawa, H., Tables of thermodynamic properties of inorganic compounds, Spec. Issue J. Nat. Chem. Lab. Ind., 1998, vol. 83, p. 27.

    Google Scholar 

  49. Thermodynamic Properties of Individual Substances, in 4 vol., Gurvich, L.V., Weitz, I.V. Medvedev, V.A., et al., Eds.; Glushko, V.P., Ed. in Chief (in Russian), Moscow: Science, 1978-1979.

  50. Gavritchev, K.S., Sharpataya, G.A., Smagin, A.A., Malyi, E.N., and Matyukha, V.A., Calorimetric study of thermal decomposition of lithium hexafluorophosphate, J. Therm. Anal. Cal., 2003, vol. 73, p. 71. https://doi.org/10.1023/A:1025125306291

    Article  CAS  Google Scholar 

  51. Gavrichev, K.S., Sharpataya, G.A., Golushina, L.N., Plakhotnik, V.N., and Goncharova, I.V., Heat capacity and thermodynamic functions of LiPF6 (in Russian), Russ. J. Inorg. Chem., 2002, vol. 47, no. 7, p. 940.

    Google Scholar 

  52. Knyazev, A.V., Maczka, M., Smirnova, N.N., Knyazeva, S.S., Chernorukov, N.G., Ptak, M., and Shushunov, A.N., Study of the phase transition and thermodynamic functions of LiMn2O4, Thermochim. Acta, 2014, vol. 593, p. 58. https://doi.org/10.1016/j.tca.2014.08.020

    Article  CAS  Google Scholar 

  53. Knyazeva, S.S., Structure and physico-chemical properties of complex oxides with spinel structure, Cand. Sci. (Chem.) Dissertation, Nizhny Novgorod, 2015.

  54. Santiago, E.I., Andrade, A.V.C., Paiva-Santos, C.O., and Bulhoes, L.O.S., Structural and electrochemical properties of LiCoO2 prepared by combustion synthesis, Solid State Ionics, 2003, vol. 158, p. 91. https://doi.org/10.1016/S0167-2738(02)00765-8

    Article  CAS  Google Scholar 

  55. Dorn, W. S., Variational principles for chemical equilibrium, J. Chem. Phys., 1960, vol. 32, p. 1490. https://doi.org/10.1063/1.1730947

    Article  CAS  Google Scholar 

  56. Bushkova, O.V., Andreev, O.L., Batalov, N.N., Shkerin, S.N., Kuznetsov, M.V., Tyutyunnik, A.P., Koryakova, O.V., Song, E.H., and Chung, H.J., Chemical interaction in the cathode half-element of lithium ion batteries (in Russian), Electrochemical Energetics, 2005, vol. 5, no. 2, p. 74. http://energetica.sgu.ru/ en/node/2527.

  57. Bushkova, O.V., Andreev, O.L., Batalov, N.N., Shkerin, S.N., Kuznetsov, M.V., Tyutyunnik, A.P., Koryakova, O.V., Song, E.H., and Chung, H.J., Chemical interactions in the cathode half-cell of lithium-ion batteries. Part I. Thermodynamic simulation, J. Power Sources, 2006, vol. 157, p. 477. https://doi.org/10.1016/j.jpowsour.2005.07.078

    Article  CAS  Google Scholar 

  58. Novikov, D.V., Evschik, E.Yu., Berestenko, V.I., Yaroslavtseva, T.V., Levchenko, A.V., Kuznetsov, M.V., Bukun, N.G., Bushkova, O.V., and Dobrovolsky, Yu.A., Electrochemical performance and surface chemistry of nanoparticle Si@SiO2 Li-ion battery anode in LiPF6-based electrolyte, Electrochim. Acta, 2016, vol. 208, p. 109. https://doi.org/10.1016/j.electacta.2016.04.179

    Article  CAS  Google Scholar 

  59. Julien, C., Mauger, A., Vijh, A., and Zaghib, K. Lithium Batteries: Science Technology, New York: Springer, 2016, p. 175-180.

    Book  Google Scholar 

  60. Mauger, A. and Julien, C.M., Critical review on lithium-ion batteries: Are they safe? Sustainable? Ionics, 2017, vol. 23, p. 1933. https://doi.org/10.1007/s11581-017-2177-8

    Article  CAS  Google Scholar 

  61. Whittingham, M.S., History, evolution, and future status of energy storage, Proc. IEEE, 2012, vol. 100 (Special Centennial Issue), p. 1518. https://doi.org/10.1109/JPROC.2012.2190170

  62. Aurbach, D., Levi, M., Gamulski, K., Markovsky, B., Salitra, G., Levi, E., Heider, U., Heider, L., and Oesten, R., Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques, J. Power Sources, 1999, vol. 81-82, p. 472. https://doi.org/10.1016/s0378-7753(99)00204-9

    Article  CAS  Google Scholar 

  63. Vorobeva, K.A., Eliseeva, S.N., Apraksin, R.V., Kamenskii, M.A., Tolstopjatova, E.G., and Kondra-tiev, V.V., Improved electrochemical properties of cathode material LiMn2O4 with conducting polymer binder, J. Alloys Compd., 2018, vol. 766, p. 33. https://doi.org/10.1016/j.jallcom.2018.06.324

    Article  CAS  Google Scholar 

  64. Ryou, M.H., Han, G.B., Lee, Y.M., Lee, J.N., Lee, D. J., Yoon, Y.O., & Park, J.K., Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells, Electrochim. Acta, 2010, vol. 55, p. 2073. https://doi.org/10.1016/j.electacta.2009.11.036

    Article  CAS  Google Scholar 

  65. Zhuravlev, V.D., Shchekoldin, S.I., Andrjushin, S.E., Sherstobitova, E.A., Nefedova, K.V., and Bushkova, O.V., Electrochemical characteristics and phase composition of lithium–manganese oxide spinel with excess lithium Li1 + xMn2O4 (in Russian), Electrokhimicheskaya Energetika, 2020, vol. 20, no. 3, p. 157. https://doi.org/10.18500/16080-4039-2020-20-3-157-170

    Article  Google Scholar 

  66. Astafiev, E.A., Practical Guide to the Electrochemical Impedance Method (in Russian), Chernogolovka: Fed. Res. Cen. Prob.Chem. Phys. Med. Sci., RAS, 2022.

  67. Levi, M. D., Salitra, G., Markovsky, B., Teller, H., Aurbach, D., Heider, U., and Heider, L., Solid-State Electrochemical Kinetics of Li-Ion Intercalation into Li1 − xCoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS, J. Electrochem. Soc., 1999, vol. 146, p. 1279. https://doi.org/10.1149/1.1391759

    Article  CAS  Google Scholar 

  68. Aurbach, D., Gamolsky, K., Markovsky, B., Salitra, G., Gofer, Y., Heider, U., Oesten, R., and Schmidt, M., The Study of Surface Phenomena Related to Electrochemical Lithium intercalation into LixMOy Host Materials (M = Ni, Mn), J. Electrochem. Soc., 2000, vol. 147, p. 1322. https://doi.org/10.1149/1.1393357

    Article  CAS  Google Scholar 

  69. Levi, M. D. and Aurbach, D., Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltametric characteristics of graphite electrodes doped with lithium, J. Phys. Chem. B, 1997, vol. 101, p. 4630. https://doi.org/10.1021/jp9701909

    Article  CAS  Google Scholar 

  70. Aurbach, D., Levi, M. D., Levi, E., Teller, H., Markovsky, B., and Salitra, G., Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides, J. Electrochem. Soc., 1998, vol. 145, no. 9, p. 3024. https://doi.org/10.1149/1.1838758

    Article  CAS  Google Scholar 

  71. Osaka, T., Mukoyama, D., and Nara, H., Review—Development of diagnostic process for commercially available batteries, especially lithium ion battery, by electrochemical impedance spectroscopy, J. Electrochem. Soc., 2015, vol. 162, p. A2529. https://doi.org/10.1149/2.0141514jes

    Article  CAS  Google Scholar 

  72. Li, Q., Lu, D., Zheng, J., Jiao, S., Luo, L., Wang, C.-M., Xu, K., Zhang, J.-G., and Xu, W., Li+ desolvation dictating lithium-ion battery’s low temperature performances, ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 42761. https://doi.org/10.1021/acsami.7b13887

    Article  CAS  PubMed  Google Scholar 

  73. Xu, K., von Cresce, A., and Lee, U., Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface, Langmuir, 2010, vol. 26, p. 11538. https://doi.org/10.1021/la1009994

    Article  CAS  PubMed  Google Scholar 

  74. Tatara, R., Karayaylali, P., Yu, Y., Zhang, Y., Giordano, L., Maglia, F., Jung, R., Schmidt, J. P., Lund, I., and Shao-Horn, Y., The effect of electrode-electrolyte interface on the electrochemical impedance spectra for positive electrode in Li-ion battery, J. Electrochem. Soc., 2019, vol. 166, p. A5090. https://doi.org/10.1149/2.0121903jes

    Article  CAS  Google Scholar 

  75. Eriksson, T., Andersson, A. M., Bishop, A. G., Gejke, C., Gustafsson, T., and Thomas, J. O., Surface analysis of LiMn2O4 electrodes in carbonate-based electrolytes, J. Electrochem. Soc., 2001, vol. 149, p. A69. https://doi.org/10.1149/1.1426398

    Article  CAS  Google Scholar 

  76. Amatucci, G.G., Pereira, N., Zheng, T., and Tarascon, J.M., Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2 − xO4 − zFz solid Solution, J. Electrochem. Soc., 2001, vol. 148, p. A171. https://doi.org/10.1149/1.1342168

    Article  CAS  Google Scholar 

  77. Militello, M.C. and Gaarenstroom, S.W., Lithium manganese oxide (LiMn2O4) by XPS, Surf. Sci. Spectra, 2001, vol. 8, p. 207. https://doi.org/10.1116/11.20020402

    Article  CAS  Google Scholar 

  78. Eriksson, T., Andersson, A.M., Gejke, C., Gustafsson, T., and Thomas, J.O., Influence of temperature on the interface chemistry of LixMn2O4 electrodes, Langmuir, 2002, vol. 18, p. 3609. https://doi.org/10.1021/la011354m

    Article  CAS  Google Scholar 

  79. Duncan, H., Duguay, D., Abu-Lebdeh, Y., and Davidson, I.J., Study of the LiMn1.5Ni0.5O4/electrolyte interface at room temperature and 60° C, J. Electrochem. Soc., 2011, vol. 158, p. A537. https://doi.org/10.1149/1.3567954

    Article  CAS  Google Scholar 

  80. Herstedt, M., Stjerndahl, M., Nytén, A., Gustafsson, T., Rensmo, H., Siegbahn, H., Ravet, N., Armand, M., Thomas, J.O., and Edström, K., Surface chemistry of carbon-treated LiFePO4 particles for Li-ion battery cathodes studied by PES, Electrochem. Solid-State Lett., 2003, vol. 6, p. A202. https://doi.org/10.1016/j.jpowsour.2007.06.050

    Article  CAS  Google Scholar 

  81. Gauthier, M., Karayaylali, P., Giordano, L., Feng, S., Lux, S. F., Maglia, F., and Shao-Horn, Y., Probing surface chemistry changes using LiCoO2-only electrodes in Li-ion batteries, J. Electrochem. Soc., 2018, vol. 165, p. A1377. https://doi.org/10.1149/2.0431807jes

    Article  CAS  Google Scholar 

  82. Andersson, A. M., Herstedt, M., Bishop, A. G., and Edström, K., The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes, Electrochim. Acta, 2002, vol. 47, p. 1885. https://doi.org/10.1016/S0013-4686(02)00044-0

    Article  CAS  Google Scholar 

  83. Aurbach, D., Weissman, I., Schechter, A., and Cohen, H., X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions, A comparison with previous studies by Fourier transform infrared spectroscopy, Langmuir, 1996, vol. 12, p. 3991. https://doi.org/10.1021/la9600762

    Article  CAS  Google Scholar 

  84. Aurbach, D., Markovsky, B., Shechter, A., Ein-Eli, Y., and Cohen, H., A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate-dimethyl carbonate mixtures, J. Electrochem. Soc., 1996, vol. 143, p. 3809. https://doi.org/10.1149/1.1837300

    Article  CAS  Google Scholar 

  85. Chowdari, B.V.R., Mok, K.F., **e, J.M., and Gopalakrishnan, R., Electrical and structural studies of lithium fluorophosphate glasses, Solid State Ionics, 1995, vol. 76, p. 189. https://doi.org/10.1016/0167-2738(94)00280-6

    Article  CAS  Google Scholar 

  86. Moulder, J.F., Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, 1992. 261 p.

    Google Scholar 

  87. Duncan, H., Abu-Lebdeh, Y., and Davidson, I.J., Study of the cathode–electrolyte interface of LiMn1.5Ni0.5O4 synthesized by a sol–gel method for Li-ion batteries, J. Electrochem. Soc., 2010, vol. 157, p. A528. https://doi.org/10.1149/1.3321710

    Article  CAS  Google Scholar 

  88. Chowdari, B.V.R., Tan, K.L., and Chia, W.T., Raman and X-ray photoelectron spectroscopic studies of lithium phosphotungstate glasses, Solid State Ionics, 1992, vol. 53, p. 1172. https://doi.org/10.1016/0167-2738(92)90308-C

    Article  Google Scholar 

  89. Bryngelsson, H., Stjerndahl, M., Gustafsson, T., and Edström, K., How dynamic is the SEI? J. Power Sources, 2007, vol. 174, p. 970. https://doi.org/10.1016/j.jpowsour.2007.06.050

    Article  CAS  Google Scholar 

  90. NIST X-ray Photoelectron Spectroscopy Database version 4.1. https://srdata.nist.gov/xps/Default.aspx

  91. Militello, M.C. and Gaarenstroom, S.W., Graphite-filled poly (vinylidene fluoride) (PVDF) by XPS, Surf. Sci. Spectra, 1999, vol. 6, p. 141. https://doi.org/10.1116/1.12479080

    Article  CAS  Google Scholar 

  92. Biesinger, M. C., Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review, Appl. Surf. Sci., 2022, vol. 597, art. 153681. https://doi.org/10.1016/j.apsusc.2022.153681

    Article  CAS  Google Scholar 

  93. Amatucci, G.G., Schmutz, C.N., Blyr, A., Sigala, C., Gozdz, A. S., Larcher, D., and Tarascon, J.M., Materials’ effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion batteries, J. Power Sources, 1997, vol. 69, p. 11. https://doi.org/10.1016/S0378-7753(97)02542-1

    Article  CAS  Google Scholar 

  94. Amatucci, G.G., Blyr, A., Sigala, C., Alfonse, P., and Tarascon, J. M., Surface treatments of Li1 + xMn2 − xO4 spinels for improved elevated temperature performance, Solid State Ionics, 1997, vol. 104, p. 13. https://doi.org/10.1016/S0167-2738(97)00407-4

    Article  CAS  Google Scholar 

  95. Yi, T. F., Zhu, Y.R., Zhu, X.D., Shu, J., Yue, C B., and Zhou, A.N., A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery, Ionics, 2009, vol. 15, p. 779. https://doi.org/10.1007/s11581-009-0373-x

    Article  CAS  Google Scholar 

  96. Bushkova, O.V., Yaroslavtseva, T.V., and Dobrovolsky, Yu.A., New lithium salts in electrolytes for lithium-ion batteries (A Review), Russ. J. Electrochem., 2017, vol. 53, p. 677. https://doi.org/10.1134/S1023193517070035

    Article  CAS  Google Scholar 

Download references

Funding

This work is performed under the State Contract of the Institute of Solid State Chemistry, Ural Branch, RAS, according to the topic no. 124020600047-4) and the Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS, according to the topic no. 124013000692-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Koshkina or T. V. Yaroslavtseva.

Ethics declarations

The authors of this work declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshkina, A.A., Yaroslavtseva, T.V., Ukshe, A.E. et al. Surface Degradation of Lithium–Manganese Spinel in Contact with Lithium-Hexafluorophosphate-Containing Electrolyte Solution. Russ J Electrochem 60, 263–282 (2024). https://doi.org/10.1134/S1023193524040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193524040049

Keywords:

Navigation