Log in

Thermodynamic Study of Ag8GeTe6 and Ag8GeTe6 – xSex Solid Solutions by the EMF Method with Solid Ag+-Conducting Electrolyte

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The thermodynamic properties of the Ag8GeTe6 compound and Ag8GeTe6 – xSex solid solutions are studied by means of EMF measurement of concentration cells with a solid Ag electrode relative to the Ag4RbI5 electrolyte in the temperature range 300–400 K. From the EMF measurement data, the partial thermodynamic functions of silver in the alloys are calculated. Based on the solid-phase equilibria data in the Ag–Ge–Se–Te system, the potential-forming reactions responsible for these partial molar functions are determined and the standard thermodynamic functions of formation and standard entropies of the Ag8GeTe6 compound and Ag8GeTe5Se, Ag8GeTe4Se2, Ag8GeTe3Se3, Ag8GeTe2Se4, and Ag8GeTeSe5 solid solutions are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Applications of Chalcogenides: S, Se, and Te, Ahluwalia, G.K., Ed., Cham: Springer, 2016.

    Google Scholar 

  2. Chalcogenides: Advances in Research and Applications, Woodrow, P., Ed., New York: Nova, 2018.

    Google Scholar 

  3. Chalcogenide. From 3D to 2D and beyond, Liu, X., Lee, S., Furdyna, J.K., Luo, T., and Zhang, Y.-H., Eds., Elsevier, 2019.

  4. Scheer, R. and Schock, H-W., Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, Wiley-VCH, 2011.

    Book  Google Scholar 

  5. Alonso-Vante, N., Chalcogenide Materials for Energy Conversion: Pathways to Oxygen and Hydrogen Reactions, Cham: Springer, 2018.

    Book  Google Scholar 

  6. Babanly, M.B., Yusibov, Yu.A., and Abishev, V.T., Ternary Chalcogenides on the Base of Copper and Silver, Baku: Baku State Univ., 1993.

    Google Scholar 

  7. Lin, S., Li, W., and Pei, Y., Thermally insulative thermoelectric argyrodites, Mater. Today, 2021, vol. 48, p. 198. https://doi.org/10.1016/j.mattod.2021.01.007

    Article  CAS  Google Scholar 

  8. Fujikane, M., Kurosaki, K., Muta, H., and Yamanaka, Sh., Thermoelectric properties of Ag8GeTe6, J. Alloys Compd., 2005, vol. 396, nos. 1–2, p. 280. https://doi.org/10.1016/j.jallcom.2004.12.038

    Article  CAS  Google Scholar 

  9. Jiang, Q., Li, S., Luo, Y., **n, J., Li, S., Li, W., and Yang, J., Ecofriendly highly robust Ag8SiSe6-based thermoelectric composites with excellent performance near room temperature, ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 49, p. 54653. https://doi.org/10.1021/acsami.0c15877

    Article  CAS  PubMed  Google Scholar 

  10. Fan, Y., Wang, G., Wang, R., Zhang, B., Shen, X., Jiang, P., Zhang, X., Gu, H., Lu, X., and Zhou, X., Enhanced thermoelectric properties of p-type argyrodites Cu8GeS6 through Cu vacancy, J. Alloys Compd., 2020, vol. 822, p. 153665. https://doi.org/10.1016/j.jallcom.2020.153665

    Article  CAS  Google Scholar 

  11. Semkiv, H., Ilchuk, N., and Kashuba, A., Photoluminescence of Ag8SnSe6 argyrodite, Low Temp. Phys., 2022, vol. 48, no. 1, p. 12. https://doi.org/10.1063/10.0008957

    Article  CAS  Google Scholar 

  12. Yeh, L.-Y. and Cheng, K.-W., Modification of Ag8SnS6 photoanodes with incorporation of Zn ions for photo-driven hydrogen production, Catalysts, 2021, vol. 11, no. 3, p. 363. https://doi.org/10.3390/catal11030363

    Article  CAS  Google Scholar 

  13. Yang, M., Shao, G., Wu, B., Jiang, J., Liu, S., and Huimin, L., Irregularly shaped bimetallic chalcogenide Ag8SnS6 nanoparticles as electrocatalysts for hydrogen evolution, ACS Appl. Nano Mater., 2021, vol. 4, no. 7, p. 6745. https://doi.org/10.1021/acsanm.1c00769

    Article  CAS  Google Scholar 

  14. Ivanov-Shits, A.K. and Murin, I.V., Solid State Ionics, St. Petersburg: St. Petersburg State Univ., 2000, vol. 1.

    Google Scholar 

  15. Li, L., Liu, Y., Dai, J., Hong, A., Zeng, M., Yan, Z., Xu, J., Zhang, D., Shan, D., Liu, S., Ren, Zh., and Liu, J.-M., High thermoelectric performance of superionic argyrodite compound Ag8SnSe6, J. Mater. Chem. C, 2016, vol. 4, p. 5806. https://doi.org/10.1039/C6TC00810K

    Article  CAS  Google Scholar 

  16. Sardarly, R.M., Ashirov, G.M., Mashadiyeva, L.F., Aliyeva, N.A., Salmanov, F.T., Agayeva, R.Sh., Mamedov, R.A., and Babanly, M.B., Ionic conductivity of the Ag8GeSe6 compound, Mod. Phys. Lett. B, 2022, vol. 36, no. 32n33, p. 2250171. https://doi.org/10.1142/S0217984922501718

  17. Studenyak, I.P., Pogodin, A.I., Studenyak, V.I., Izai, V.Y., Filep, M.J., Kokhan, O.P., and Kúš, P., Electrical properties of copper- and silver-containing superionic (Cu1 − xAgx)7SiS5I mixed crystals with argyrodite structure, Solid State Ionics, 2020, vol. 345, p. 115183. https://doi.org/10.1016/j.ssi.2019.115183

    Article  CAS  Google Scholar 

  18. Lin, Y., Fang, S., Su, D., and Brinkman, K.S., Enhancing grain boundary ionic conductivity in mixed ionic-electronic conductors, Nat. Commun., 2015, vol. 6, no. 1, p. 1. https://doi.org/10.1038/ncomms7824

    Article  CAS  Google Scholar 

  19. Heep, B.K., Weldert, K.S., Krysiak, Y., Day, T.W., Zeier, W.G., Kolb, U., Snyder, G.J., and Tremel, W., High electron mobility and disorder induced by silver ion migration lead to good thermoelectric performance in the argyrodite Ag8SiSe6, Chem. Mater., 2017, vol. 29, no. 11, p. 4833. https://doi.org/10.1021/acs.chemmater.7b00767

    Article  CAS  Google Scholar 

  20. Li, W., Lin, S., Ge, B., Yang, J., Zhang, W., and Pei, Y., Low sound velocity contributing to the high thermoelectric performance of Ag8SnSe6, Adv. Sci., 2016, vol. 3, no. 11, p. 1600196. https://doi.org/10.1002/advs.201600196

    Article  CAS  Google Scholar 

  21. Weldert, K.S., Zeier, W.G., Day, T.W., Panthofer, M., Snyder, G.J., and Tremel, W., Thermoelectric transport in Cu7PSe6 with high copper ionic mobility, J. Am. Chem. Soc., 2014, vol. 136, p. 12035. https://doi.org/10.1021/ja5056092

    Article  CAS  PubMed  Google Scholar 

  22. Matsushita, T. and Mukai, K., Chemical Thermodynamics in Materials Science: from Basics to Practical Applications, Springer Singapore, 2018.

    Book  Google Scholar 

  23. Babanly, M.B., Mashadiyeva, L.F., Babanly, D.M., Imamaliyeva, S.Z., Tagiyev, D.B., and Yusibov, Yu.A., Some aspects of complex investigation of the phase equilibria and thermodynamic properties of the ternary chalcogenid systems by the EMF method, Russ. J. Inorg. Chem., 2019, vol. 64, no. 13, p. 1649. https://doi.org/10.1134/S0036023619130035

    Article  CAS  Google Scholar 

  24. Babanly, M.B., Yusibov, Y.A., and Babanly, N.B., The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary copper and silver chalcogenides, in Electromotive Force and Measurement in Several Systems, Kara, S., Ed., Intechweb.Org, 2011, p. 57.

  25. Morachevskii, A.G., Voronin, G.F., Geiderich, V.A., and Kutsenok, I.B., Electrochemical Research Methods for Metallic Systems Thermodynamics, Moscow: Akademkniga, 2003.

    Google Scholar 

  26. Babanly, M.B. and Yusibov, Yu.A., Electrochemical Methods for Inorganic Systems Thermodynamics, Baku: Elm, 2011.

  27. Osadchii, E.G., Korepanov, Ya.I., and Zhdanov, N.N., A multichannel electrochemical cell with glycerin-based liquid electrolyte, Instrum. Exp. Tech., 2016, vol. 59, no. 2, p. 302. https://doi.org/10.1134/S0020441216010255

    Article  CAS  Google Scholar 

  28. Kristavchuk, A.V., Zabolotskaya, A.V., Voronin, M.V., Chareev, D.A., and Osadchii, E.G., Temperature dependence of tellurium fugacity for the kotulskite (PdTe)-merenskyite (PdTe2) equilibrium determined by the method of a solid-state galvanic cell, Phys. Chem. Miner., 2021, vol. 48, p. 16. https://doi.org/10.1007/s00269-021-01141-x

    Article  CAS  Google Scholar 

  29. Hasanova, G.S., Aghazade, A.I., Babanly, D.M., Imamaliyeva, S.Z., Yusibov, Y.A., and Babanly, M.B., Experimental study of the phase relations and thermodynamic properties of Bi–Se system, J. Thermal. Anal. Calorim., 2021, vol. 147, p. 6403. https://doi.org/10.1007/s10973-021-10975-0

    Article  CAS  Google Scholar 

  30. Imamaliyeva, S.Z., Mekhdiyeva, I.F., Jafarov, Y.I., and Babanly, M.B., Thermodynamic study of the thallium-thulium tellurides by EMF method, Bull. Karaganda Univ., Chem. Ser., 2021, vol. 21, no. 3, p. 43. https://doi.org/10.31489/2021Ch2/43-52

    Article  Google Scholar 

  31. Vassiliev, V.P. and Lysenko, V.A., A New approach for the study of thermodynamic properties of lanthanide compounds, Electrochim. Acta, 2016, vol. 222, p. 1770. https://doi.org/10.1016/j.electacta.2016.11.075

    Article  CAS  Google Scholar 

  32. Vassiliev, V.P., Lysenko, V., and Bros, J., Thermodynamic study of the Ag-In-Sn system by the EMF method, J. Alloys Compd., 2019, vol. 790, p. 370. https://doi.org/10.1016/J.JALLCOM.2019.03.016

    Article  CAS  Google Scholar 

  33. Mashadiyeva, L.F., Babanly, D.M., Yusibov, Yu.A., Tagiyev, D.B., and Babanly, M.B., Thermodynamic study of the Ag–Sb–Se system by the EMF with solid electrolyte Ag4RbI5, Russ. J. Electrochem., 2021, vol. 57, p. 281. https://doi.org/10.1134/S1023193521030083

    Article  Google Scholar 

  34. Alverdiyev, I.J., Imamaliyeva, S.Z., Babanly, D.M., Yusibov, Yu.A., Tagiyev, D.B., and Babanly, M.B., Thermodynamic study of siver-tin selenides by the EMF method with Ag4RbI5 solid electrolyte, Russ. J. Electrochem., 2019, vol. 55, p. 467. https://doi.org/10.1134/S1023193519050021

    Article  Google Scholar 

  35. Moroz, M., Tesfaye, F., Demchenko, P., Mastronardo, E., and Mysina, O., Experimental thermodynamic characterization of the chalcopyrite-based compounds in the Ag–In–Te system for a potential thermoelectric application, Energies, 2022, vol. 15, no. 21, p. 8180. https://doi.org/10.3390/en15218180

    Article  CAS  Google Scholar 

  36. Moroz, M.V., Prokhorenko, M.V., Prokhorenko, S.V., Yatskov, M.V., and Reshetnyak, O.V., Thermodynamic properties of AgIn2Te3I and AgIn2Te3Br, determined by the EMF method, Russ. J. Phys. Chem. A, 2018, vol. 92, no. 1, p. 19. https://doi.org/10.1134/S0036024418010168

    Article  CAS  Google Scholar 

  37. Moroz, M.V., Prokhorenko, M.V., and Rudyk, B.P., Thermodynamic properties of phases of the Ag–Ge–Te system, Russ. J. Electrochem., 2014, vol. 50, p. 1177. https://doi.org/10.1134/S1023193514120039

    Article  CAS  Google Scholar 

  38. Babanly, N.B., Orujlu, E.N., Imamalieva, S.Z., Yusibov, Yu.A., and Babanly, M.B., Thermodynamic investigation of silver–thallium tellurides by EMF method with solid electrolyte Ag4RbI5, J. Chem. Thermodyn., 2019, vol. 128, p. 78. https://doi.org/10.1016/j.jct.2018.08.012

    Article  CAS  Google Scholar 

  39. Alverdiev, I.Dzh., Bagkheri, S.M., Imamalieva, S.Z., Yusibov, Yu.A., and Babanly, M.B., Thermodynamic study of Ag8GeSe6 by EMF with an Ag4RbI5 solid electrolyte, Russ. J. Electrochem., 2017, vol. 53, p. 551. https://doi.org/10.1134/S1023193517050032

    Article  CAS  Google Scholar 

  40. Babanly, M.B., Mashadiyeva, L.F., Veliyeva, G.M., and Imamaliyeva, S.Z., Thermodynamic study of the Ag–As–Se and Ag–S–I systems using the EMF method with a sold Ag4RbI5 electrolyte, Russ. J. Electrochem., 2009, vol. 45, p. 399. https://doi.org/10.1134/S1023193509040077

    Article  CAS  Google Scholar 

  41. Geller, S., Crystal structure of the solid electrolyte, RbAg4I5, Science, 1967, vol. 157, p. 310.

    Article  CAS  PubMed  Google Scholar 

  42. Shelimova, L.E., Tomashyk, V.N., and Gricyv, V.I., State Diagrams in Semiconductor Material Science, Moscow: Nauka, 1991.

    Google Scholar 

  43. Yusibov, Y.A., Alverdiev, I.D., Ibragimova, F.S., Mamedov, A.N., Tagiyev, D.B., and Babanly, M.B., Study and 3D modeling of the phase diagram of the Ag–Ge–Se system, Russ. J. Inorg. Chem., 2017, vol. 62, p. 1223. https://doi.org/10.1134/S0036023617090182

    Article  CAS  Google Scholar 

  44. Chizhevskaya, S.N. and Shelimova, L.E., Se–Te phase diagram and structures of amorphous and crystalline Se1 – xTex alloys: critical review, Russ. J. Inorg. Chem., 1997, vol. 42, no. 5, p. 827.

    CAS  Google Scholar 

  45. Amiraslanova, A.J., Mammadova, A.T., Alverdiyev, I.J., and Yusibov, Yu.A., Ag8GeS6(Se6)–Ag8GeTe6 systems: phase relations, synthesis and characterization of solid solutions, Azerb. Chem. J., 2023, no. 1, p. 22.

  46. Database of Thermal Constants of Substances. Electronic Version, Iorish, V.S. and Yungman, V.S., Eds., 2006. http://www.chem.msu.su/cgi-bin/tkv.

  47. Alakbarova, T.M., Thermodynamic properties of germanium telluride, New Mater., Compd. Appl., 2021, vol. 5, no. 1, p. 59.

    CAS  Google Scholar 

  48. Hirayama, C., Thermodynamic properties of solid monoxides, monosulfides, monoselenides, and monotellurides of Ge, Sn, and Pb, J. Chem. Eng. Data, 1964, vol. 9, no. 1, p. 65.

    Article  CAS  Google Scholar 

  49. Sadikov, K.B. and Semenkovich, S.A., Study of the thermodynamic properties of germanium telluride, News Acad. Sci. Turkmen SSR, Ser. Phys.-Tech., Chem., Geol. Sci., 1966, vol. 3, p. 20.

    Google Scholar 

  50. Kubaschewski, O., Alcock, C.B., and Spenser, P.J., Materials Thermochemistry, Pergamon Press, 1993.

    Google Scholar 

  51. Barin, I., Thermochemical Data of Pure Substances, 3rd ed., Wiley-VCH, 2008.

    Google Scholar 

  52. Gerasimov, Y.I., Krestovnikov, A.N., and Gorbov, S.I., Chemical Thermodynamics for Non-Ferrous Metallurgy. Handbook, Moscow: Metallurgiya, 1974, vol. 6.

    Google Scholar 

  53. O’Hare, P.A.G., Susman, S., and Volin, K.J., The energy difference between the crystalline and vitreous forms of germanium diselenide as determined by combustion calorimetry in fluorine. The Ge–Se bond energy, J. Non. Cryst. Solids, 1987, vol. 89, nos. 1–2, p. 24.

    Article  Google Scholar 

  54. Ghosh, G., Lukas, H.L., and Delaey, L., A thermodynamic assessment of the Se–Te system, Calphad, 1988, vol. 12, no. 3, pp. 295–299. https://doi.org/10.1016/0364-5916(88)90010-7

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the Development Fund science under the President of the Republic of Azerbaijan (grant EİF-BGM-4-RFTF-1/2017-21/11/4-M-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Imamaliyeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiraslanova, A.J., Mamedova, A.T., Imamaliyeva, S.Z. et al. Thermodynamic Study of Ag8GeTe6 and Ag8GeTe6 – xSex Solid Solutions by the EMF Method with Solid Ag+-Conducting Electrolyte. Russ J Electrochem 59, 1071–1079 (2023). https://doi.org/10.1134/S1023193523120030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523120030

Keywords:

Navigation