Log in

Carbon Nanopaper Produced from Carbon Nanotubes/Resorcinol–Formaldehyde Xerogel Nanocomposite for Electrochemical Supercapasitors

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—

The nanocomposite of resorcinol–formaldehyde xerogel (RF-xerogel) and carbon nanotubes after carbonization at 800°С was obtained in the form of composite carbon nanopaper (CCNP) with a thickness of 100–300 microns, a density from 0.1 to 0.5 g/cm2 and an electronic conductivity of more than 10 S/cm. According to the low temperature nitrogen adsorption data, the microporous structure of the nanopaper is formed by carbonized RF-xerogel, and the mesoporous structure is formed by the nanotube framework. The specific surface area of the nanopaper calculated by the method of nonlocal density function theory (NLDFT) exceeds 600 m2/g. The main contribution to the specific surface area of CCNP is made by pores with a width of ~0.7 nm, therefore, electrodes for a supercapacitor made of such paper are quite effective only in aqueous solutions of H2SO4 and KOH with small sizes of solvated ions. A technique for nanopaper activation with potassium hydroxide has been developed for the use of CCNP with organic electrolytes. The maximum specific surface area (NLDFT method) of activated CCNP reaches 1182 m2/g with a loss of carbon xerogel mass of ~25%. At the same time, the pore surface area of more than 1 nm width increases from 350 m2/g in CCNP to 685 m2/g in activated CCNP. Nanopaper has mechanical strength, pretty cheap and convenient for use in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Pandolfo, A.G. and Hollencamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.

    Article  CAS  Google Scholar 

  2. Burke, A., Ultracapacitors: why, how, and where is the technology, J. Power Sources, 2000, vol. 91, p. 37.

    Article  CAS  Google Scholar 

  3. Burke, A. and Miller, M., The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications, J. Power Sources, 2011, vol. 196, p. 514.

    Article  CAS  Google Scholar 

  4. Gogotsy, Y. and Simon, P., True performace metrics in electrical energy storage, Science, 2011, vol. 334, p. 917.

    Article  Google Scholar 

  5. Yang, X., Cheng, Ch., Wang, Y., Qiu, L., and Li, D., Liquid-mediated dense integration of graphene materials for compact capacitive energy storage, Science, 2013, vol. 341, p. 534.

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Y., Lin, Z., Zhong, X., Huang, X., Weiss, N.O., Huang, Y., and Duan, X., Holey graphene frameworks for highly efficient capacitive energy storage, Nat. Commun., 2014, vol. 5, p. 4554.

    Article  CAS  PubMed  Google Scholar 

  7. Zhu, Y., Murali, Sh., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., and Ruoff, R.S., Carbon-based supercapacitors produced by activation of graphene, Science, 2011, vol. 332, no. 6037, p. 1537.

    Article  CAS  PubMed  Google Scholar 

  8. Mayer, S.T., Pekala, R.W., and Kaschmitter, J.L., The aerocapacitor: an electrochemical double-layer energy-storage device, J. Electrochem. Soc., 1993, vol. 42, no. 2, p. 446.

    Article  Google Scholar 

  9. Probstle, H., Schmitt, C., and Fricke, J., Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources, 2000, vol. 105, p. 189.

    Article  Google Scholar 

  10. Futaba, D.N., Hata, K., Yamada, T., Hiraoka, T., Hayamizu, Y., Kakudate, Y., Tanaike, O., Hatori, H., Yumura, M., and Iijima, S., Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater., 2006, vol. 51, p. 987.

    Article  Google Scholar 

  11. Yoon, Y., Lee, K., Kwon, S., Seo, S., Yoo, H., Kim, S., Shin, Y., Park, Y., Kim, D., Choi, J.-Y., and Lee, H., Sheets spatially and densely piled for fast ion diffusion in compact supercapacitors, ACS Nano, 2014, vol. 8, p. 436.

    Article  Google Scholar 

  12. Shi, H., Activated carbons and double layer capacitance, Electrochim. Acta, 1996, vol. 41, no. 10, p. 1633.

    Article  CAS  Google Scholar 

  13. Stoller, M.D. and Ruoff, R.S., Best practice methods for determining an electrode materials performance for ultracapacitors, Energy Environ. Sci., 2010, vol. 3, p. 1294.

    Article  CAS  Google Scholar 

  14. Bordjiba, M., Mohamedi, L., and Dao, H., Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels, J. Power Sources, 2007, vol. 172, p. 991.

    Article  CAS  Google Scholar 

  15. An, K.H., Kim, W.S., Park, Y.S., Moon, J.-M., Bae, D.J., Lim, S.Ch., Lee, Y.S., and Lee, Y.H., Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes, Adv. Funct. Mater., 2001, vol. 11, no. 5, p. 387.

    Article  CAS  Google Scholar 

  16. Izadi-Najafabadi, A., Yasuda, S., Kobashi, K., Yamada, T., Futaba, D.N., Hatori, H., Yumura, M., Iijima, S., and Hata, K., Extracting the full potential of single-walled carbon nanotubes as durable supercapacitor electrodes operable at 4 V with high power and energy density, Adv. Mater., 2010, vol. 22, p. 235.

    Article  Google Scholar 

  17. Burke, A. and Miller, M., Testing of electrochemical capacitors: capacitance, resistance, energy density, and power capability, Electrochem. Acta, 2010, vol. 55, p. 7538.

    Article  CAS  Google Scholar 

  18. Pekala, R.W., Organic aerogels from the polycondensation of resorcinol with formaldehyde, J. Mater. Sci., 1989, vol. 24, p. 3221.

    Article  CAS  Google Scholar 

  19. Saliger, R., Reichenauer, G., and Fricke, J., Evolution of microporosity upon CO2-activation of carbon aerogels, in Studies in Surface Science and Catalysis 128, Unger, K.K. et al., Eds., Elsevier Science B.V., 2000.

    Google Scholar 

  20. Job, N., Pirard, R., Marien, J., and Pirard, J.-P., Porous carbon xerogels with texture tailored by pH control during sol-gel process, Carbon, 2004, vol. 42, p. 619.

    Article  CAS  Google Scholar 

  21. Calvo, E.G., Ania, C.O., Zubizarreta, L., Menendez, J.A., and Arenillas, A., Exploring new routes in the synthesis of carbon xerogels for their application in electric double-layer capacitors, Energy Fuels, 2010, vol. 24, p. 3334.

    Article  CAS  Google Scholar 

  22. Fang, B. and Binder, L., A modified activated carbon aerogel for high-energy storage in electric double layer capacitors, J. Power Sources, 2006, vol. 163, p. 616.

    Article  CAS  Google Scholar 

  23. Schmitt, C., Probstle, H., and Fricke, J., Carbon cloth-reinforced and activated aerogel films for supercapacitors, J. Non-Crystal. Solids, 2001, vol. 285, p. 277.

    Article  CAS  Google Scholar 

  24. https://ocsial.com.

  25. Krestinin, A.V., Dremova, N.N., Knerel’man, E.I., Blinova, L.N., Zhigalina, V.G., and Kiselev, N.A., Characterization of SWCNT products manufactured in Russia and the prospects for their industrial application, Nanotech. Russ., 2015, vol. 10, no. 7-8, p. 537.

    Article  CAS  Google Scholar 

  26. Vol’fkovich, Yu.M., Rychagov, A.Yu., and Sosenkin, V.E., Effect of the porous structure on the electrochemical characteristics of supercapacitor with nanocomposite electrodes based on carbon nanotubes and resorcinol-formaldehyde xerogel, Russ. J. Electrochem., 2022, vol. 58, no. 9, p. 730. https://doi.org/10.1134/S1023193522090142

    Article  Google Scholar 

  27. Lin, Ch., Ritter, J.A., and Popov, B.N., Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon xerogels, J. Electrochem. Soc., 1999, vol. 146, no. 10, p. 3639.

    Article  CAS  Google Scholar 

  28. Barranco, V., Lillo-Rodenas, M.A., Linares-Solano, A., Oya, A., Pico, F., Ibanez, J., Agullo-Rueda, F., Amarilla, J.M., and Rojo, J.M., Amorphous carbon nanofibers and their activated carbon nanofibers as supercapacitor, J. Phys. Chem. C, 2010, vol. 114, p. 10302.

    Article  CAS  Google Scholar 

  29. Raymundo-Pinero, E., Azaıs, P., Cacciaguerra, T., Cazorla-Amoros, D., Linares-Solano, A., and Beguin, F., KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization, Carbon, 2005, vol. 43, p. 786.

    Article  CAS  Google Scholar 

  30. McKee, D.W., Gasification of graphite in carbon dioxide and water vapor-the catalytic effects of alkali metal salts, Carbon, 1982, vol. 20, p. 59.

    Article  CAS  Google Scholar 

  31. Lillo-Rodenas, M.A., Cazorla-Amoros, D., and Linares-Solano, A., Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism, Carbon, 2003, vol. 41, p. 267.

    Article  CAS  Google Scholar 

  32. Thermodynamic Properties of Individual Substances. Handbook, Glushko, V.P., Ed., Moscow: Nauka, 1979, vol. 2, book 2.

  33. Barrett, E.P., Joyner, L.G., and Halenda, P.P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 1951, vol. 73, p. 373. https://doi.org/10.1021/ja01145a126

    Article  CAS  Google Scholar 

  34. Brunauer, S., Emmett, P.H., and Teller, E., Adsorption of gases in multimolecular layers, J. Am. Chem. Soc., 1938, vol. 60, p. 309. https://doi.org/10.1021/ja01269a023

    Article  CAS  Google Scholar 

  35. Lippens, B.C. and de Boer, J.H., Studies on pore systems in catalysts: the t method, J. Catal., 1965, vol. 4, no. 3, p. 319. https://doi.org/10.1016/0021-9517(65)90307-6

    Article  CAS  Google Scholar 

  36. Lufrano, F., Staiti, P., Calvo, E.G., Juarez-Perez, E.J., Menendez, J.A., and Arenillas, A., Carbon xerogels and manganese oxide capacitive materials for advance supercapacitors, J. Electrochem. Sci., 2011, vol. 6, p. 596.

    Article  CAS  Google Scholar 

  37. Zubizarreta, L., Arenillas, A., Pirard, J.P., Pis, J.J., and Job, N., Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH, Micropor. Mesopor. Mater., 2008, vol. 115, p. 480.

    Article  CAS  Google Scholar 

  38. Everett, D.H. and Powl, J.C., Adsorption in slit-like and cylindrical micropores in the Henry’s law region, J. Chem. Soc., Faraday Trans. I, 1976, vol. 72, p. 619.

    Article  CAS  Google Scholar 

  39. Lastoskie, Ch., Gubbins, K.E., and Quirkef, N., Pore size distribution analysis of microporous carbons: a density functional theory approach, J. Phys. Chem., 1993, vol. 97, p. 4786.

    Article  CAS  Google Scholar 

  40. Autosorb-1 Operating ManualVer. 1.53.

  41. Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density, Dordrecht: Springer, 2006.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Using the equipment of the Analytical Center for Collective Use of the FRC PCPMC RAS and the Center for Collective Use “New petrochemical processes, polymer composites and adhesives” of the IPHF RAS (no. 77601).

Funding

The work was performed within the framework of the State Task on the topic no. 0089-2019-0012 (State registration no. AAAA19-119032690060-9) and no. 0089-2019-0018 (State registration no. АААА-А19-119022690098-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Krestinin.

Ethics declarations

The authors state that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krestinin, A.V., Knerel’man, E.I., Dremova, N.N. et al. Carbon Nanopaper Produced from Carbon Nanotubes/Resorcinol–Formaldehyde Xerogel Nanocomposite for Electrochemical Supercapasitors. Russ J Electrochem 59, 666–677 (2023). https://doi.org/10.1134/S1023193523090082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523090082

Keywords:

Navigation