Log in

Electrochemical Parameters of Microbial Fuel Cells Based on the Micrococcus luteus Strain, New Ion-Exchange Membranes and Various Sugars

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract—

We studied the physicochemical and electrochemical characteristics of microbial fuel cells (MFCs) with a new proton-exchange membrane. It was synthesized on the basis of zeolite-doped polyvinyl alcohol cross-linked with sulfosuccinic acid (PVA-SSA-BEA). An MF-4SK industrial membrane (Plastpolymer, Russia) was used as a comparative sample. Various sugars were added as substrates (glucose, arabinose, galactose, xylose). The role of the bioagent was performed by the strain Micrococcus luteus 1-i. MFCs with PVA‑SSA-BEA and MF-4SK membranes showed rather close electrochemical characteristics. A higher electricity output was performed with the addition of glucose, galactose, the lowest—with the use of xylose. The data obtained indicate that the proposed PVA-SSA-BEA membrane is promising for use as an alternative to proton-exchange membranes widely used in fuel cell technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ramya, M. and Kumar, P.S., A review on recent advancements in bioenergy production using microbial fuel cells, Chemosphere, 2022, vol. 288, p. 132512. https://doi.org/10.1016/j.chemosphere.2021.132512

    Article  CAS  PubMed  Google Scholar 

  2. Wilberforce, T., Abdelkareem, M.A., Elsaid, K., Olabi, A.G., and Sayed, E.T., Role of carbon-based nanomaterials in improving the performance of microbial fuel cells, Energy, 2022, vol. 240, p. 122478. https://doi.org/10.1016/j.energy.2021.122478

    Article  CAS  Google Scholar 

  3. Boas, J.V., Oliveira, V.B., Simões, M., and Pinto, A.M.F.R., Review on microbial fuel cells applications, developments and costs, J. Environ. Manag., 2022, vol. 307, p. 114525. https://doi.org/10.1016/j.jenvman.2022.114525

    Article  CAS  Google Scholar 

  4. Mohyudin, S., Farooq, R., Jubeen, F., Rasheed, T., Fatima, M., and Sher, F., Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation, Environ. Res., 2022, vol. 204, p. 112387. https://doi.org/10.1016/j.envres.2021.112387

    Article  CAS  PubMed  Google Scholar 

  5. Liu, L., Zhou, X., Wang, Y., Li, S., Yin, R., Ji, X., Zhao, X., and Li, B., Study of high active and redox-stable La0.9Ca0.1Fe0.9Nb0.1O3 – δ/Sm0.1Ce0.9O2 − δ composite ceramic electrode for solid oxide reversible cells, Electrochim. Acta, 2017, vol. 236, p. 371. https://doi.org/10.1016/j.electacta.2017.03.195

    Article  CAS  Google Scholar 

  6. Moon, J.M., Kondaveeti, S., and Min, B., Evaluation of low-cost separators for increased power generation in single chamber microbial fuel cells with membrane electrode assembly, Fuel Cells, 2015, vol. 15, no. 1, p. 230. https://doi.org/10.1002/fuce.201400036

    Article  CAS  Google Scholar 

  7. Hendrana, S., Chaldun, E.R., Pudjiastuti, S., Rahayu, I., Natanael, C.L., Oktaverina, D., and Semboor, M.S., Heterogeneous sulphonation of polystyrene for polymer electrolyte membrane fuel cell application, Macromol. Symp., 2013, vol. 1, p. 80. https://doi.org/10.1002/masy.201350509

    Article  CAS  Google Scholar 

  8. Bai, Z., Durstock, M.F., and Dang, T.D., Proton conductivity and properties of sulfonated polyarylenethioether sulfones as proton exchange membranes in fuel cells, J. Membr. Sci., 2006, vol. 281, nos. 1–2, p. 508. https://doi.org/10.1016/j.memsci.2006.04.021

    Article  CAS  Google Scholar 

  9. Umar, M.F., Rafatullah, M., Abbas, S.Z., Mohamad, I.M.N., and Ismail, N., Advancement in benthic microbial fuel cells toward sustainable bioremediation and renewable energy production, Int. J. Environ. Res. Publ. Health, 2021, vol. 18, no. 7, p. 3811. https://doi.org/10.3390/ijerph18073811

    Article  CAS  Google Scholar 

  10. Wang, H., Chen, P., Zhang, Sh., Jiang, J., Hua, T., and Li, F., Degradation of pyrene using single-chamber air-cathode microbial fuel cells: electrochemical parameters and bacterial community changes, Sci. Total Environ., 2022, vol. 804, p. 150153. https://doi.org/10.1016/j.scitotenv.2021.150153

    Article  CAS  PubMed  Google Scholar 

  11. Dai, Q., Zhang, S., Liu, H., Huang, J., and Li, L., Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell, Bioelectrochemistry, 2020, vol. 131, p. 107349. https://doi.org/10.1016/j.bioelechem.2019.107349

    Article  CAS  PubMed  Google Scholar 

  12. Chesnokova, A.N., Zhamsaranzhapova, T.D., Zakarchevskiy, S.A., Kulshrestha, V., Skornikova, S.A., Makarov, S.S., and Pozhidaev, Yu.N., Effect of zeolite content on proton conductivity and technical characteristics of the membranes based on crosslinked polyvinyl alcohol. Izv. Vyssh. Uchebn. Zaved., Prikl. Khim. Biotekhnol., 2020, vol. 10, no. 2, p. 360. https://doi.org/10.21285/2227-2925-2020-10-2-360-367

    Article  CAS  Google Scholar 

  13. Stom, D.I., Konovalova, E.Yu., Zhdanova, G.O., Tolstoy, M.Yu., and Vyatchina, O.F., Active sludge and strains isolated from it as bioagents in biofuel cells, Proc. 17th Int. Multidisciplinary Sci. Geoconf. SGEM 2017, Vienna, 2017, vol. 17, issue 42, p. 19. https://doi.org/10.5593/sgem2017/42/S17.003

  14. Kuznetsov, A.V., Khorina, N.N., Konovalova, E.Yu., Amsheev, D.Yu., Ponamoreva, O.N., and Stom, D.I., Bioelectrochemical processes of oxidation of dicarboxylic amino acids by strain Micrococcus luteus 1-I in a biofuel cell, IOP Conf. Ser.: Earth Environ. Sci., 2021, vol. 808, p. 012038. https://doi.org/10.1088/1755-1315/808/1/012038

  15. Lebedeva, O.V., Pozhidaev, Yu.N., Malakhova, E.A., Raskulova, T.V., Chesnokova, A.N., Kulshrestha, V., et al., Sodium p-styrene sulfonate-1-vinylimidazole copolymers for acid-base proton-exchange membranes, Membr. Membr. Technol., 2020, vol. 2, p. 76. https://doi.org/10.1134/S2517751620020079

    Article  CAS  Google Scholar 

  16. Volkov, V.I., Pavlov, A.A., and Sanginov, E.A., Ionic transport mechanism in cation-exchange membranes studied by NMR technique, Solid State Ionics, 2011, vol. 188, no. 1, p. 124.

    Article  CAS  Google Scholar 

  17. Stenina, I.A. and Yaroslavtsev, A.B., Ionic mobility in ion-exchange membranes, Membranes, 2021, vol. 11, p. 198. https://doi.org/10.3390/membranes11030198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yaroslavtsev, A.B., Solid electrolytes: main prospects of research and development, Russ. Chem. Rev., 2016, vol. 85, p. 1255. https://doi.org/10.1070/RCR4634

    Article  CAS  Google Scholar 

  19. Peng, J., Tian, M., Cantillo, N.M., and Zawodzinski, T., The ion and water transport properties of K+ and Na+ form perfluorosulfonic acid polymer, Electrochim. Acta, 2018, vol. 282, p. 544. https://doi.org/10.1016/j.electacta.2018.06.035

    Article  CAS  Google Scholar 

  20. Shi, S., Weber, A.Z., and Kusoglu, A., Structure-transport relationship of perfluorosulfonic-acid membranes in different cationic forms, Electrochim. Acta, 2016, vol. 220, p. 517. https://doi.org/10.1016/j.electacta.2016.10.096

    Article  CAS  Google Scholar 

  21. Okada, T., **e, G., Gorseth, O., Kjelstrup, S., Nakamura, N., and Arimura, T., Ion and water transport characteristics of Nafion membranes as electrolytes, Electrochim. Acta, 1998, vol. 43, p. 3741. https://doi.org/10.1016/S0013-4686(98)00132-7

    Article  CAS  Google Scholar 

  22. Heyrovska, R., Dependence of ion-water distances on covalent radii, ionic radii in water and distances of oxygen and hydrogen of water from ion/water boundaries, Chem. Phys. Lett., 2006, p. 600.

  23. Konovalova, E.Yu., Barbora, L., Chizhik, K.I., and Stom, D.I., Micrococcus luteus and Serratia marcescens, as a new association of bio-agents for microbial fuel cells, IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 408, p. 012080. https://doi.org/10.1088/1755-1315/408/1/012080

  24. Choi, Y., Jung, E., Park, H., Jung, S., and Kim, S., Effect of initial carbon sources on the performance of a microbial fuel cell containing environmental microorganism Micrococcus luteus, Korean Chem. Soc., 2007, vol. 28, no. 9, p. 1591.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.A. Skornikova, Candidate of Chemistry, Associate Professor of INRTU—for providing of zeolites samples, to E.Yu. Konovalova—for providing of strain M. luteus 1-i.

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the Baikal Research and Education Center (grant no. FZZS-2021-0007) and the Russian Foundation for Basic Research (project no. 21-54-12022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. N. Chesnokova or D. I. Stom.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokova, A.N., Zakarchevsky, S.A., Zhdanova, G.O. et al. Electrochemical Parameters of Microbial Fuel Cells Based on the Micrococcus luteus Strain, New Ion-Exchange Membranes and Various Sugars. Russ J Electrochem 59, 660–665 (2023). https://doi.org/10.1134/S1023193523090057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193523090057

Keywords:

Navigation