Log in

Electrochemical Behavior of (Fe,Ni)Ox-Based Anodes for Solid-Oxide Fuel Cells in Methane-Containing Atmospheres

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The work is devoted to investigation of the electrochemical behavior of (Fe,Ni)Ox-based composite anodes in the hydrogen- and methane-containing fuel. Among the studied composites, the optimum electrochemical characteristics were observed for anodes with Fe : Ni ratio approaching 2. In particular, for the electrodes with initial composition 50 vol % Fe0.67Ni0.33Oх–50 vol % Zr0.85Y0.15O1.93 the anode overpotential equals 20–30 mV at a current density of 50–80 mA/cm2 in 10% Н2–Ar–H2O at relatively low temperatures (873–923 K). Increasing current leads to further activation, presumably due to a partial oxidation of metallic particles located at the anode surface. However, the microstructure degradation of the anode layers still represents a significant problem for their utilization. Testing of the electrocatalytic activity of the anodes fabricated from Ni, Zr0.83Sc0.17O1.92 (ScSZ) and Ce0.9Gd0.1 O2 – δ (GDC) revealed a high activity toward catalytic partial methane oxidation with the subsequent electrochemical oxidation of the conversion products, as well as formation of carbonaceous deposits at the nickel surface. The methane conversion degree on Ni-anode comes to 60–90% and decreases with time and on cooling. The do** of nickel oxide with iron lowers the conversion degree and promotes the carbon poisoning, supposedly, because of the lowering of the anodic current density resulting from the worsening of the electrochemical activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Wood, T. and Ivey, D.G., The impact of redox cycling on solid oxide fuel cell lifetime, Solid Oxide Fuel Cell Lifetime and Reliability, Amsterdam: Elsevier, 2017.

    Google Scholar 

  2. Chen-Wiegart, Y.-c.K., Kennouche, D., Cronin, J.S., Barnett, S.A., and Wang, J., Effect of Ni content on the morphological evolution of Ni–YSZ solid oxide fuel cell electrodes, Appl. Phys. Lett., 2016, vol. 108, p. 083903.

    Article  Google Scholar 

  3. Buyukaksoy, A. and Birss, V.I., Highly active nanoscale Ni–Yttria stabilized zirconia anodes for micro-solid oxide fuel cell applications, J. Power Sources, 2016, vol. 307, p. 449.

    Article  CAS  Google Scholar 

  4. Osinkin, D.A., Bogdanovich, N.M., Beresnev, S.M., and Zhuravlev, V.D., High-performance anode-supported solid oxide fuel cell with impregnated electrodes, J. Power Sources, 2015, vol.288, p. 20.

    Article  CAS  Google Scholar 

  5. Connor, P.A., Yue, X., Savaniu, C.D., Price, R., Triantafyllou, G., Cassidy, M., Kerherve, G., Payne, D.J., Maher, R.C., Cohen, L.F., Tomov, R.I., Glowacki, B.A., Kumar, R.V., and Irvine, J.T.S., Tailoring SOFC electrode microstructures for improved performance, Adv. Energy Mater., 2018, p. 1800120.

  6. Dai, H., Chen, H., He, S., Cai, G., and Guo, L., Improving solid oxide fuel cell performance by a single-step co-firing process, J. Power Sources, 2015, vol. 286, p. 427.

    Article  CAS  Google Scholar 

  7. Hedayat, N., Panthi, D., and Du, Y., Fabrication of anode-supported microtubular solid oxide fuel cells by sequential dip-coating and reduced sintering steps, Electrochim. Acta, 2017, vol. 258, p. 694.

    Article  CAS  Google Scholar 

  8. Irvine, J.T.S., Neagu, D., Verbraeken, M.C., Chatzichristodoulou, C., Graves, C., and Mogensen, M.B., Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers, Nature Energy, 2016, vol. 1, p. 1.

    Article  Google Scholar 

  9. Chen, J., Bertei, A., Ruiz-Trejo, E., Atkinson, A., and Brandon, N.P., Characterization of degradation in nickel impregnated scandia-stabilize zirconia electrodes during isothermal annealing, J. Electrochem. Soc., 2017, vol. 169, p. F935.

    Article  Google Scholar 

  10. Konar, R., Mukhopadhyay, J., Sharma, A.D., and Basu, R.N., Synthesis of Cu–YSZ and Ni–Cu–YSZ cermets by a novel electroless technique for use as solid oxide fuel cell anode: Application potentiality towards fuel flexibility in biogas atmosphere, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1151.

    Article  CAS  Google Scholar 

  11. McIntosh, S. and Gorte, R.J., Direct hydrocarbon solid oxide fuel cells, Chem. Rev., 2004, vol. 104, p. 4845.

    Article  CAS  Google Scholar 

  12. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects, J. Solid State Electrochem., 2011, vol. 15, p. 1007.

    Article  CAS  Google Scholar 

  13. Park, H.C. and Virkar, A.V., Bimetallic (Ni–Fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte, J. Power Sources, 2009, vol. 186, p. 133.

    Article  CAS  Google Scholar 

  14. Gross, M.D., Vohs, J.M., and Gorte, R.J., Recent progress in SOFC anodes for direct utilization of hydrocarbons, J. Mater. Chem., 2007, vol. 17, p. 3071.

    Article  CAS  Google Scholar 

  15. Kan, H. and Lee, H., Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel, Catal. Commun., 2010, vol. 12, p. 36.

    Article  CAS  Google Scholar 

  16. Landon, J., Demeter, E., İnoğlu, N., Keturakis, C., Wachs, I.E., Vasić, R., Frenkel, A.I., and Kitchin, J.R., Spectroscopic characterization of mixed Fe–Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes, ACS Catal., 2012, vol. 2, p. 1793.

    Article  CAS  Google Scholar 

  17. Provendier, H., Petit, C., Estournès, C., Libs, S., and Kiennemann, A., Stabilisation of active nickel catalysts in partial oxidation of methane to synthesis gas by iron addition, Appl. Catal. A, 1999, vol. 180, p. 163.

    Article  CAS  Google Scholar 

  18. Tian, D., Liu, Z., Li, D., Shi, H., Pan, W., and Cheng, Y., Bimetallic Ni–Fe total-methanation catalyst for the production of substitute natural gas under high pressure, Fuel, 2013, vol. 104, p. 224.

    Article  CAS  Google Scholar 

  19. Kofstad, P.K. Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972.

    Google Scholar 

  20. Tret’yakov, Yu.D., Chemistry of nonstoichiometric oxides (in Russian), Moscow: Mos. Univ., 1974.

    Google Scholar 

  21. Rossmeisl, J. and Bessler, W.G., Trends in catalytic activity for SOFC anode materials, Solid State Ionics, 2008, vol. 178, p. 1694.

    Article  CAS  Google Scholar 

  22. An, W., Gatewood, D., Dunlap, B., and Turner, C.H., Catalytic activity of bimetallic nickel alloys for solid-oxide fuel cell anode reactions from density-functional theory, J. Power Sources, 2011, vol. 196, p. 4724.

    Article  CAS  Google Scholar 

  23. Bredikhin, S.I., Agarkov, D.A., Aronin, A.S., Burmistrov, I.N., Matveev, D.V., and Kharton, V.V., Ion transfer in Ni-containing composite anodes of solid oxide fuel cells: A microstructural study, Mater. Lett., 2018, vol. 216, p. 193.

    Article  CAS  Google Scholar 

  24. Benrabaa, R., Löfberg, A., Caballero, J.G., Bordes-Richard, E., Rubbens, A., Vannier, R.-N., Boukhlouf, H., and Barama, A., Sol–gel synthesis and characterization of silica supported nickel ferrite catalysts for dry reforming of methane, Catal. Commun., 2015, vol. 58, p. 127.

    Article  CAS  Google Scholar 

  25. Pouran, S.R., Raman, A.A.A., and Daud, W.M.A., Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions, J. Cleaner Production, 2014, vol. 64, p. 24.

    Article  Google Scholar 

  26. Pereira, M.C., Oliveira, L.C.A., and Murad, E., Iron oxide catalysts: Fenton and Fenton-like reactions—a review, Clay Minerals, 2012, vol. 47, p. 285.

    Article  CAS  Google Scholar 

  27. Ringuedé, A., Labrincha, J.A., and Frade, J.R., A combustion synthesis method to obtain alternative cermet materials for SOFC anodes, Solid State Ionics, 2001, vol. 141, p. 549.

    Article  Google Scholar 

  28. Kolotygin, V.A., Noskova, V.A., Bredikhin, S.I., and Kharton, V.V., Redox behavior and transport properties of composites based on (Fe,Ni)3O4 ± δ for anodes of solid oxide fuel cells, Russ. J. Electrochem., 2018, vol. 54, p. 506.

    Article  CAS  Google Scholar 

  29. Kharton, V.V., Tsipis, E.V., Marozau, I.P., Viskup, A.P., Frade, J.R., and Irvine, J.T.S., Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3 – δ, Solid State Ionics, 2007, vol. 178, p. 101.

    Article  CAS  Google Scholar 

  30. Matveev, D.V., Demeneva, N.V., Bredikhin, S.I., Ivanov, A.I., and Kharton, V.V., RF Patent 2568815, 2014.

  31. Kolotygin, V.A., Noskova, V.A., Kharton, V.V., and Bredikhin, S.I., RF Patent 2661074, 2017.

  32. Patterson, D. and Levine, N.A., US Patent 4879907, 1989.

  33. Guo, J. and Heslop, M.J., Diffusion problems of soap-film flowmeter when measuring very low-rate gas flow, Flow Measurement and Instrumentation, 2004, vol. 15, p. 331.

    Article  CAS  Google Scholar 

  34. Rhamdhani, M.A., Hayes, P.C., and Jak, E., Subsolidus phase equilibria of the Fe–Ni–O System, Metal. Mater. Trans. B, 2008, vol. 39B, p. 690.

    Article  CAS  Google Scholar 

  35. Kawada, T., Sakai, N., Yokokawa, H., Dokiya, M., Mori, M., and Iwata, T., Structure and polarization characteristics of solid oxide fuel cell anodes, Solid State Ionics, 1990, vol. 40–41, p. 402.

    Article  Google Scholar 

  36. Primdahl, S. and Mogensen, M., Gas conversion impedance: a test geometry effect in characterization of solid oxide fuel cell anodes, J. Electrochem. Soc., 1998, vol. 145, p. 2431.

    Article  CAS  Google Scholar 

  37. Babaei, A., Jiang, S.P., and Li, J., Electrocatalytic promotion of palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spillover, J. Electrochem. Soc., 2009, vol. 156, p. B1022.

    Article  CAS  Google Scholar 

  38. Jiang, S.P. and Chan, S.H., A review of anode materials development in solid oxide fuel cells, J. Mater. Sci., 2004, vol. 39, p. 4405.

    Article  CAS  Google Scholar 

  39. Tsipis, E.V., Kharton, V.V., Bashmakov, I.A., Naumovich, E.N., and Frade, J.R., Cellulose-precursor synthesis of nanocrystalline Ce0.8Gd0.2O2 – δ for SOFC anodes, J. Solid State Electrochem., 2004, vol. 8, p. 674.

    Article  CAS  Google Scholar 

  40. Herzing, A.A., Kiely, C.J., Carley, A.F., Landon, P., and Hutchings, G.J., Identification of active gold nanoclusters on iron oxide supports for CO oxidation, Science, 2008, vol. 321, p. 1331.

    Article  CAS  Google Scholar 

  41. Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., Liu, J., Li, J., and Zhang, T., Single-atom catalysis of CO oxidation using Pt/FeOx,Nature Chem., 2011, vol. 3, p. 634.

    Article  CAS  Google Scholar 

  42. Cimenti, M. and Hill, J.M., Direct utilization of liquid fuels in SOFC for portable applications: challenges for the selection of alternative anodes, Energies, 2009, vol. 2, p. 377.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 17-79-30071). Experimental benches and procedures for electrical measurements were developed according to the State task of the Institute of Solid State Physics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolotygin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Published on the basis of materials of the 5th All-Russia Conference “Fuel Cells and Power Plants Based on Them” (with international participation), Suzdal, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolotygin, V.A., Ivanov, A.I., Matveev, D.V. et al. Electrochemical Behavior of (Fe,Ni)Ox-Based Anodes for Solid-Oxide Fuel Cells in Methane-Containing Atmospheres. Russ J Electrochem 56, 147–155 (2020). https://doi.org/10.1134/S102319352002007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319352002007X

Keywords:

Navigation