Log in

Redox Behavior and Transport Properties of Composites Based on (Fe,Ni)3O4 ± δ for Anodes of Solid Oxide Fuel Cells

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The Fe–Ni–O system designed for producing bimetal-containing composite anodes of solid oxide fuel cells (SOFCs) was studied. The solubility of nickel in the structure of spinel (Fe,Ni)3O4 ± δ at atmospheric oxygen pressure is ~1/3. Moderate reduction at 1023 K and p(O2) ≈ 10–20 atm leads to partial decomposition of spinels, forming an electron-conducting phase (Fe,Ni)1–yO and submicron bimetallic Fe–Ni particles on the oxide surface, which have potentially high catalytic activity. The electron conductivity has a thermally activated character and increases substantially during the reduction. In the anode conditions of SOFCs, the electric conductivity reaches 30–100 S/cm, while the thermal expansion coefficients are ~12 × 10–6 K–1, which ensures compatibility with solid electrolytes. At the same time, significant volume changes during the redox cycling (up to ~1% on the linear scale) necessitate the introduction of additional components such as yttria-stabilized zirconia (YSZ). The polarization resistance of the model composite anode of reduced Fe2NiO4 ± δ and YSZ deposited on the YSZ solid electrolyte membrane was ~1.8 Ohm cm2 at 923 K in a 4% H2–Ar–H2O atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minh, N.Q., Ceramic Fuel Cells, J. Am. Ceram. Soc., 1993, vol. 76, p. 563.

    Article  CAS  Google Scholar 

  2. Jiang, S.P. and Chan, S.H., A review of anode materials development in solid oxide fuel cells, J. Mater. Sci., 2004, vol. 39, p. 4405.

    Article  CAS  Google Scholar 

  3. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. II. Electrochemical behavior vs. materials science aspects, J. Solid State Electrochem., 2008, vol. 12, p. 1367.

    Article  CAS  Google Scholar 

  4. Tsipis, E.V. and Kharton, V.V., Electrode materials and reaction mechanisms in solid oxide fuel cells: A brief review. III. Recent trends and selected methodological aspects, J. Solid State Electrochem., 2011, vol. 15, p. 1007.

    Article  CAS  Google Scholar 

  5. Park, H.C. and Virkar, A.V., Bimetallic (Ni–Fe) anode-supported solid oxide fuel cells with gadoliniadoped ceria electrolyte, J. Power Sources, 2009, vol. 186, p. 133.

    Article  CAS  Google Scholar 

  6. Lee, S.I., Vohs, J.M., and Gorte, R.J., A study of SOFC anodes based on Cu–Ni and Cu–Co bimetallics in CeO2–YSZ, J. Electrochem. Soc., 2004, vol. 151, p. 1319.

    Article  CAS  Google Scholar 

  7. Gross, M.D., Vohs, J.M., and Gorte, R.J., Recent progress in SOFC anodes for direct utilization of hydrocarbons, J. Mater. Chem., 2007, vol. 17, p. 3071.

    Article  CAS  Google Scholar 

  8. Lu, Z.G., Zhu, J.H., Bi, Z.H., and Lu, X.C., A Co–Fe alloy as alternative anode for solid oxide fuel cell, J. Power Sources, 2008, vol. 180, p. 172.

    Article  CAS  Google Scholar 

  9. Konar, R., Mukhopadhyay, J., Sharma, A.D., and Basu, R.N., Synthesis of Cu–YSZ and Ni–Cu–YSZ cermets by a novel electroless technique for use as solid oxide fuel cell anode: Application potentiality towards fuel flexibility in biogas atmosphere, Int. J. Hydrogen Energy, 2016, vol. 41, p. 1151.

    Article  CAS  Google Scholar 

  10. Kim, S., Kim, C., Lee, J.H., Shin, J.B, Lim, T.-H., and Kim, G., Tailoring Ni-based catalyst by alloying with transition metals (M = Ni, Co, Cu, and Fe) for direct hydrocarbon utilization of energy conversion devices, Electrochim. Acta, 2017, vol. 225, p. 399.

    CAS  Google Scholar 

  11. Ringuedé, A., Labrincha, J.A., and Frade, J.R., A combustion synthesis method to obtain alternative cer-met materials for SOFC anodes, Solid State Ionics, 2001, vol. 141, p. 549.

    Article  Google Scholar 

  12. Kan, H. and Lee, H., Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel, Catal. Commun., 2010, vol. 12, p. 36.

    Article  CAS  Google Scholar 

  13. Wang, J.-G., Liu, C.-J., Zhang, Y.-P., Yu, K.-L., Zhu, X.-L., and He, F., Partial oxidation of methane to syngas over glow discharge plasma treated Ni–Fe/Al2O3 catalyst, Catal. Today, 2004, vol. 89, p. 183.

    Article  CAS  Google Scholar 

  14. Dieckmann, R., Defects and cation diffusion in magnetite (IV): nonstoichiometry and point defect structure of magnetite (Fe3-δO4), Ber. Bunsen-Ges., 1982, vol. 86, p. 112.

    Article  CAS  Google Scholar 

  15. Kofstad, P., Otklonenie ot stekhiometrii, diffuziya i elektroprovodnost’ v prostykh okislakh metallov (Nonstoichiometry, Diffusion, and Electric Conductivity in Metal Oxides), Moscow, Mir, 1975.

    Google Scholar 

  16. Tret’yakov, Yu.D., Khimiya nestekhiometricheskikh oksidov (Chemistry of Nonstoichiometric Oxides), Moscow: Mosk. Gos. Univ., 1974.

    Google Scholar 

  17. Petric, A. and Ling, H., Electrical conductivity and thermal expansion of spinels at elevated temperatures, J. Am. Ceram. Soc., 2007, vol. 90, p. 1515.

    Article  CAS  Google Scholar 

  18. Summerfelt, S.R. and Carter, C.B., Kinetics of NiFe2O4 precipitation in NiO, J. Am. Ceram. Soc., 1992, vol. 75, p. 2244.

    Article  CAS  Google Scholar 

  19. Solís, C., Somacescu, S., Palafox, E., Balaguer, M., and Serra, J.M., Particular transport properties of NiFe2O4 thin films at high temperatures, J. Phys. Chem. C, 2014, vol. 118, p. 24266.

    Article  CAS  Google Scholar 

  20. Patrakeev, M.V., Mitberg, E.B., Lakhtin, A.A., Leonidov, I.A., Kozhevnikov, V.L., Kharton, V.V., Avdeev, M., and Marques, F.M.B., Oxygen nonstoichiometry, conductivity, and Seebeck coefficient of La0.3Sr0.7Fe1 †xGaxO2.65 + δ perovskites, J. Solid State Chem., 2002, vol. 167, p. 203.

    Article  CAS  Google Scholar 

  21. West, A.R., Solid State Chemistry and Its Applications, vol. 2, New York: Wiley, 2014.

    Google Scholar 

  22. Lazarević, Z.Ž., Sekulić, D.L., Ivanovski, V.N., and Romčević, N.Ž., A structural and magnetic investigation of the inversion degree in spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 ferrites prepared by soft mechanochemical synthesis, Int. J. Chem. Molec. Nucl. Mater. Metal. Eng., 2015, vol. 9, p. 1066.

    Google Scholar 

  23. Nozaki, T., Hayashi, K., Miyazaki, Y., and Kajitani, T., Cation distribution dependence on thermoelectric properties of doped spinel M0.6Fe2.4O4, Mater. Trans., 2012, vol. 53, p. 1164.

    Article  CAS  Google Scholar 

  24. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta. Crystal., 1976, vol. A32, p. 751.

    Article  CAS  Google Scholar 

  25. Yaremchenko, A.A., Kovalevsky, A.V., Naumovich, E.N., Kharton, V.V., and Frade, J.R., High-temperature electrical properties of magnesiowustite Mg1 †xFexO and spinel Fe3 †x †yMgxCryO4 ceramics, Solid State Ionics, 2011, vol. 192, p. 252.

    Article  CAS  Google Scholar 

  26. Klemensø, T., Chung, C., Larsen, P.H., and Mogensen, M., The mechanism behind redox instability of anodes in high-temperature SOFCs, J. Electrochem. Soc., 2005, vol. 152, p. 2186.

    Article  Google Scholar 

  27. Mori, M., Yamamoto, T., Itoh, H., Inaba, H., and Tagawa, H., Thermal expansion of nickel–zirconia anodes in Solid Oxide Fuel Cells during fabrication and operation, J. Electrochem. Soc., 1998, vol. 145, p. 1374.

    Article  CAS  Google Scholar 

  28. Schneider, F. and Schmalzried, H., Thermodynamic investigation of the system Ni–Fe–O, Z. Phys. Chem. Neue Folge, 1990, vol. 166, p. 1.

    Article  CAS  Google Scholar 

  29. Rhamdhani, M.A., Hayes, P.C., and Jak, E., Subsolidus phase equilibria of the Fe–Ni–O System, Metall. Mater. Trans. B, 2008, vol. 39B, p. 690.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolotygin.

Additional information

Original Russian Text © V.A. Kolotygin, V.A. Noskova, S.I. Bredikhin, V.V. Kharton, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 6, pp. 584–592.

Presented at the IV All-Russian Conference “Fuel Cells and Fuel Cell based Power Plants” (with international participation) June 25‒29, 2017, Suzdal, Vladimir region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolotygin, V.A., Noskova, V.A., Bredikhin, S.I. et al. Redox Behavior and Transport Properties of Composites Based on (Fe,Ni)3O4 ± δ for Anodes of Solid Oxide Fuel Cells. Russ J Electrochem 54, 506–513 (2018). https://doi.org/10.1134/S1023193518060071

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518060071

Keywords

Navigation