Log in

Kinetics of NiO reduction and morphological changes in composite anodes of solid oxide fuel cells: Estimate using Raman scattering technique

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The kinetics of nickel reduction and morphological changes in Ni–10Sc1CeSZ composite anodes in intermediate-temperature solid oxide fuel cells (SOFC) are studied using the Raman spectroscopy technique with the help of application of optically transparent single crystal solid electrolyte membranes and also the thermogravimetric analysis technique. It is shown that the first reduction cycle differs considerably from all the further ones, which is related to morphological changes of nickel grains occurring during the first reduction cycle. A general scheme of occurrence of the process is suggested in studies of model cells using the Raman spectroscopy technique and also in the case of thermogravimetric analysis of powders; it explains the causes for significant differences between the total duration of the process as measured using different techniques. The results of the work can be used for optimization of the mode of initial reduction of the anodic SOFC electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wachsman, E.D. and Lee, K.T., Science, 2011, vol. 334, p. 935.

    Article  CAS  Google Scholar 

  2. Huijsman, J.P.P., van Berkel, F.P.F., and Christie, G.M., J.Power Sources, 1998, vol. 71, p. 107.

    Article  Google Scholar 

  3. Dusastre, V. and Kilner, J.A., Solid State Ionics, 1999, vol. 126, p. 163.

    Article  CAS  Google Scholar 

  4. Fu, C., Sun, K., Zhang, N., Chen, X., and Zhou, D., Electrochim. Acta, 2007, vol. 52, p. 4589.

    Article  CAS  Google Scholar 

  5. Nielsen, J., Jacobsen, T., and Wandel, M., Electrochim. Acta, 2011, vol. 56, p. 7963.

    Article  CAS  Google Scholar 

  6. Rembelski, D., Viricelle, J.P., Combemale, L., and Rieu, M., Fuel Cells, 2012, vol. 12, p. 256.

    Article  CAS  Google Scholar 

  7. Hecht, E.S., Gupta, G.K., Zhu, H., Dean, A.M., Kee, R.J., Maier, L., and Deutschmann, O., Appl. Catal., A, 2005, vol. 295, p. 40.

    Article  CAS  Google Scholar 

  8. Lee, J.-H., Moon, H., Lee, H.-W., Kim, J., Kim, J.-D., and Yoon, K.-H., Solid State Ionics, 2002, vol. 148, p. 15.

    Article  CAS  Google Scholar 

  9. Koide, H., Someya, Y., Yoshida, T., and Maruyama, T., Solid State Ionics, 2000, vol. 132, p. 253.

    Article  CAS  Google Scholar 

  10. Ishihara, T., Yan, J., Shinagawa, M., and Matsumoto, H., Electrochim. Acta, 2006, vol. 52, p. 1645.

    Article  CAS  Google Scholar 

  11. Ju, Y.-W., Eto, H., Inagaki, T., Ida, S., and Ishihara, T., J.Power Sources, 2010, vol. 195, p. 6294.

    Article  CAS  Google Scholar 

  12. Ju, Y.-W., Ida, S., Inagaki, T., and Ishihara, T., J.Power Sources, 2011, vol. 196, p. 6062.

    Article  CAS  Google Scholar 

  13. Agarkov, D.A., Burmistrov, I.N., Tsybrov, F.M., Tartakovskii, I.I., Kharton, V.V., Bredikhin, S.I., and Kveder, V.V., ECS Trans., 2015, vol. 68, p. 2093.

    Article  Google Scholar 

  14. Borik, M.A., Lomonova, E.E., Osiko, V.V., Panov, V.A., Porodnikov, O.E., Vishnyakova, M.A., and Koron’ko, Yu.K., J.Cryst. Growth, 2005. vol. 275, p. e2173.

    Article  CAS  Google Scholar 

  15. Aleksandrov, V.I., Osiko, V.V., Prokhorov, A.M., and Tatarintsev, V.M., Russ. Chem. Rev., 1978, vol. 47, p. 213.

    Article  Google Scholar 

  16. Artemov, V.G., Kuritsyna, I.E., Lebedev, S.P., Komandin, G.A., Karpalov, P.O., Spektor, I.E., Kharton, V.V., Bredikhin, S.I., and Volkov, A.A., Russ. J. Electrochem., 2014, vol. 50, p. 690.

    Article  CAS  Google Scholar 

  17. Burmistrov, I., Agarkov, D., Bredikhin, S., Nepochatov, Yu., Tiunova, O., and Zadorozhnaya, O., ECS Trans., 2013, vol. 57, p. 917.

    Article  Google Scholar 

  18. Burmistrov, I.N., Agarkov, D.A., Tartakovskii, I.I., Kharton, V.V., and Bredikhin, S.I., ECS Trans., 2015, vol. 68, p. 1265.

    Article  Google Scholar 

  19. Agarkov, D.A., M. Sc. Dissertation, Chernogolovka: IFTT RAN, 2013.

    Google Scholar 

  20. Burmistrov, I.N., Cand. Sci. (Phys.–Math.) Dissertation, Chernogolovka: IFTT RAN, 2011.

    Google Scholar 

  21. Burmistrov, I., Drozhzhin, O., Istomin, S., Sinitsyn, V., Antipov, E., and Bredikhin, S., J.Electrochem. Soc., 2009, vol. 156, p. B1212.

    Article  CAS  Google Scholar 

  22. Burmistrov, I. and Bredikhin, S., ECS Trans., 2009, vol. 25, p. 2793.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Agarkov.

Additional information

Original Russian Text © D.A. Agarkov, I.N. Burmistrov, F.M. Tsybrov, I.I. Tartakovskii, V.V. Kharton, S.I. Bredikhin, 2016, published in Elektrokhimiya, 2016, Vol. 52, No. 7, pp. 673–679.

Published on the basis of the materials of III All-Russia Conference “Fuel Cells and Power Plants on Their Basis,” Chernogolovka, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarkov, D.A., Burmistrov, I.N., Tsybrov, F.M. et al. Kinetics of NiO reduction and morphological changes in composite anodes of solid oxide fuel cells: Estimate using Raman scattering technique. Russ J Electrochem 52, 600–605 (2016). https://doi.org/10.1134/S1023193516070028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193516070028

Keywords

Navigation