Log in

The Scope of Mendelian Cardiomyopathy Genes

  • REVIEW AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The review analyses the scope of the genes of Mendelian cardiomyopathies (CM), specifically hypertrophic, dilated, arrhythmogenic, and restrictive cardiomyopathy. According to Simple ClinVar, pathogenic/likely pathogenic variants of 75 genes trigger one or more types of CM. At the same time, these genes are characterized by their expression in various tissues and organs (not only in the heart and blood vessels but also in various parts of the brain, gastrointestinal tract, etc.), as well as by their involvement in a variety of metabolic pathways and biological processes. These data are generally consistent with the results of genome-wide association studies (GWAS). Polymorphisms of the CM genes are associated with various types of CM and other cardiovascular diseases, as well as obesity, various diseases of the musculoskeletal and nervous systems, and mental, oncological, infectious, and other diseases. In addition to pathological conditions, common variants of the CM genes contributed to the variation of a wide range of quantitative traits, including pathogenetically significant for various multifactorial diseases. The non-randomness of the identified associations of CM genes with a wide range of diseases is evidenced by comorbidity of CM with GWAS-associated diseases or the involvement of the latter as a symptom, a risk factor for the development of myocardial pathology, and a modifier of the clinical presentation; overlap** of the affected organ systems and the spectrum of pathologies associated with common variants (according to GWAS) and to which rare pathogenic variants (according to OMIM) of the CM genes lead; and confirmation of the involvement of CM genes in the pathogenesis of diseases of other organ systems at the molecular level. Thus, the data presented in the review indicate the wide scope of the genes of primary CMs, which goes beyond the cardiovascular system. That indicates the relevance of conducting comprehensive studies aimed at determining the cause-and-effect relationships between the CM and pathological conditions of other organs, including with the involvement of molecular genetic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Landrum, M.J., Lee, J.M., Benson, M., et al., ClinVar: improving access to variant interpretations and supporting evidence, Nucl. Acids Res., 2018, vol. 46, no. D1, pp. D1062–D1067. https://doi.org/10.1093/nar/gkx1153

    Article  CAS  PubMed  Google Scholar 

  2. Ding, W.W., Wang, B.Z., Han, L., et al., ALPK3 gene-related pediatric cardiomyopathy with craniofacial-skeletal features: a report and literature review, Zhonghua Er Ke Za Zhi = Chinese J. Pediatrics, 2021 , vol. 59, no. 9, pp. 787–792. https://doi.org/10.3760/cma.j.cn112140-20210222-00150

  3. McKenna, W.J. and Judge, D.P., Epidemiology of the inherited cardiomyopathies, Nat. Rev. Cardiol., 2021, vol. 18, no. 1, pp. 22–36. https://doi.org/10.1038/s41569-020-0428-2

    Article  PubMed  Google Scholar 

  4. Kucher, A.N., Valiakhmetov, N.R., Salakhov, R.R., et al., Phenotype variation of hypertrophic cardiomyopathy in carriers of the p.Arg870His pathogenic variant in the MYH7 gene, Byull. Sib. Med., 2022, vol. 21, no. 3, pp. 205–216. https://doi.org/10.20528/1682-0363-2022-3-205-216

    Article  Google Scholar 

  5. Salakhov, R.R., Golubenko, M.V., Valiakhmetov, N.R., et al., Application of long-read nanopore sequencing to the search for mutations in hypertrophic cardiomyopathy, Int. J. Mol. Sci., 2022, vol. 23, no. 24. https://doi.org/10.3390/ijms232415845

  6. Bezhanishvili, T.G., Gudkova, A.Y., Davydova, V.G., et al., Cardiometabolic risk factors and their relationship with the interleukin-6 receptor gene polymorphism (rs2228145) in patients with hypertrophic cardiomyopathy, Ross. Kardiol. Zh., 2020, vol. 25, no. 10. https://doi.org/10.15829/1560-4071-2020-4098

  7. Chauhan, P.K. and Sowdhamini, R., Integrative network analysis interweaves the missing links in cardiomyopathy diseasome, Sci. Rep., 2022, vol. 12, no. 1, p. 19670. https://doi.org/10.1038/s41598-022-24246-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jex, N., Chowdhary, A., Thirunavukarasu, S., et al., Coexistent diabetes is associated with the presence of adverse phenotypic features in patients with hypertrophic cardiomyopathy, Diabetes Care, 2022, vol. 45, no. 8, pp. 1852–1862. https://doi.org/10.2337/dc22-0083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, H.J., Kim, H.K., Kim, B.S., et al., Impact of diabetes mellitus on the outcomes of subjects with hypertrophic cardiomyopathy: a nationwide cohort study, Diabetes Res. Clin. Pract., 2022, vol. 186. https://doi.org/10.1016/j.diabres.2022.109838

  10. Robertson, J., Lindgren, M., Schaufelberger, M., et al., Body mass index in young women and risk of cardiomyopathy: a long-term follow-up study in Sweden, Circulation, 2020, vol. 144, no. 7, pp. 520–529. https://doi.org/10.1161/CIRCULATIONAHA.119.04-4056

    Article  Google Scholar 

  11. Karputs, I.A., Snezhitskiy, V.A., Kurbat, M.N., et al., Role of the TTN, TTN-truncation, ММР-2 and ММР-3 genes polymorphisms in the development of anthracycline-induced cardiomyopathy, Zh. Grodn. Gos. Med. Univ., 2021, vol. 19, no. 2, pp. 135–140. https://doi.org/10.25298/2221-8785-2021-19-2-5-135-140

    Article  Google Scholar 

  12. Makarov, I.A., Borodin, K.O., Makarova, T.A., and Mitrofanova, L.B., Change in cardiomyopathy phenotype due to myocarditis, MEDLINE.RU. Ross. Biomed. Zh., 2022, vol. 23, pp. 298–311.

  13. Povysil, G., Chazara, O., Carss, K.J., et al., Assessing the role of rare genetic variation in patients with heart failure, JAMA Cardiol., 2021, vol. 6, no. 4, p. e206500. https://doi.org/10.1001/jamacardio.2020.6500

    Article  Google Scholar 

  14. Patel, A.P., Dron, J.S., Wang, M., et al., Association of pathogenic DNA variants predisposing to cardiomyopathy with cardiovascular disease outcomes and all-cause mortality, JAMA Cardiol., 2022, vol. 7, no. 7, pp. 723–732. https://doi.org/10.1001/jamacardio.2022.0901

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tiron, C., Campuzano, O., Fernández-Falgueras, A., et al., Prevalence of pathogenic variants in cardiomyopathy-associated genes in myocarditis, Circ. Genom Precis. Med., 2022, vol. 15, no. 3. https://doi.org/10.1161/CIRCGEN.121.003408

  16. Walsh, R., Offerhaus, J.A., Tadros, R., and Bezzina, C.R., Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies, Nat. Rev. Cardiol., 2022, vol. 9, no. 3, pp. 151–167. https://doi.org/10.1038/s41569-021-00608-2

    Article  Google Scholar 

  17. Di Lorenzo, F., Marchionni, E., Ferradini, V., et al., DSP-related cardiomyopathy as a distinct clinical entity? Emerging evidence from an Italian cohort, Int. J. Mol. Sci., 2023, vol. 24, no. 3. https://doi.org/10.3390/ijms24032490

  18. Parker, L.E., Kramer, R.J., Kaplan, S., and Landstrom, A.P., One gene, two modes of inheritance, four diseases: a systematic review of the cardiac manifestation of pathogenic variants in JPH2-encoded junctophilin-2, Trends Cardiovasc. Med., 2023, vol. 33, no. 1, pp. 1–10. https://doi.org/10.1016/j.tcm.2021.11.006

    Article  CAS  PubMed  Google Scholar 

  19. Sollis, E., Mosaku, A., Abid, A., et al., The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource, Nucl. Acids Res., 2022, vol. 51, no. D1, pp. D977–D985. https://doi.org/10.1093/nar/gkac1010

    Article  CAS  PubMed Central  Google Scholar 

  20. Hamosh, A., Scott, A.F., Amberger, J.S., et al., Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders, Nucl. Acids Res., 2005, vol. 33, database issue, pp. D514–D517. https://doi.org/10.1093/nar/gki033

  21. Szklarczyk, D., Franceschini, A., Wyder, S., et al., STRING v10: protein–protein interaction networks, integrated over the tree of life, Nucl. Acids Res., 2015, vol. 43, database issue, pp. D447–D452. https://doi.org/10.1093/nar/gku1003

  22. McMurry, J.A., Köhler, S., Washington, N.L., et al., Navigating the phenotype frontier: The Monarch Initiative, Genetics, 2016, vol. 203, no. 4, pp. 1491–1495. https://doi.org/10.1534/genetics.116.188870

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shefchek, K.A., Harris, N.L., Gargano, M., et al., The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species, Nucl. Acids Res., 2020, vol. 48, no. D1, pp. D704–D715. https://doi.org/10.1093/nar/gkz997

    Article  CAS  PubMed  Google Scholar 

  24. Zhou, Y., Zhou, B., Pache, L., et al., Metascape provides a biologist-oriented resource for the analysis of systems-level datasets, Nat. Commun., 2019, vol. 10, no. 1, p. 1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Watanabe, K., Taskesen, E., van Bochoven, A., and Posthuma, D., Functional map** and annotation of genetic associations with FUMA, Nat. Commun., 2017, vol. 8, no. 1, p. 1826. https://doi.org/10.1038/s41467-017-01261-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, C.Y., Baek, S., Cha, J., et al., HumanNet v3: an improved database of human gene networks for disease research, Nucl. Acids Res., 2022, vol. 50, no. D1, pp. D632–D639. https://doi.org/10.1093/nar/gkab1048

    Article  CAS  PubMed  Google Scholar 

  27. GTEx Consortium, The Genotype–Tissue Expression (GTEx) project, Nat. Genet., 2013, vol. 45, no. 6, pp. 580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  28. Han, P., Li, W., Yang, J., et al., Epigenetic response to environmental stress: assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts, Biochim. Biophys. Acta, 2016, vol. 1863, no. 7, part B, pp. 1772–1781. https://doi.org/10.1016/j.bbamcr.2016.03.002

  29. Forini, F., Nicolini, G., Kusmic, C., et al., T3 critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: role of an epigenetic cross-talk, Cells, 2020, vol. 9, no. 10. https://doi.org/10.3390/cells9102155

  30. Li, X., Lin, G., Liu, T., et al., Postnatal development of BAG3 expression in mouse cerebral cortex and hippocampus, Brain Struct. Funct., 2021, vol. 226, no. 8, pp. 2629–2650. https://doi.org/10.1007/s00429-021-02356-y

    Article  CAS  PubMed  Google Scholar 

  31. UniProt Consortium, UniProt: the Universal Protein Knowledgebase in 2023, Nucl. Acids Res., 2023, vol. 51, no. D1, pp. D523–D531. https://doi.org/10.1093/nar/gkac1052

    Article  CAS  Google Scholar 

  32. Jomova, K., Makova, M., Alomar, S.Y., et al., Essential metals in health and disease, Chem. Biol. Interact., 2022, vol. 367. https://doi.org/10.1016/j.cbi.2022.110173

  33. Zhang, Y., He, J., **, J., and Ren, C., Recent advances in the application of metallomics in diagnosis and prognosis of human cancer, Metallomics, 2022, vol. 14, no. 7. https://doi.org/10.1093/mtomcs/mfac037

  34. Zhang, Y., Huang, B., **, J., et al., Recent advances in the application of ionomics in metabolic diseases, Front. Nutr., 2023, vol. 9. https://doi.org/10.3389/fnut.2022.1111933

  35. Brownrigg, J.R., Leo, V., Rose, J., et al., Epidemiology of cardiomyopathies and incident heart failure in a population-based cohort study, Heart, 2022, vol. 108, no. 17, pp. 1383–1391. https://doi.org/10.1136/heartjnl-2021-320181

    Article  PubMed  Google Scholar 

  36. Surget, E., Maltret, A., Raimondi, F., et al., Clinical presentation and heart failure in children with arrhythmogenic cardiomyopathy, Circ. Arrhythmia Electrophysiol., 2022, vol. 15, no. 2. https://doi.org/10.1161/CIRCEP.121.010346

  37. Buckley, B.J.R., Harrison, S.L., Gupta, D., et al., Atrial fibrillation in patients with cardiomyopathy: prevalence and clinical outcomes from real-world data, J. Am. Heart Assoc., 2021, vol. 10, no. 23. https://doi.org/10.1161/JAHA.121.021970

  38. Cipriani, A., Perazzolo Marra, M., Bariani, R., et al., Differential diagnosis of arrhythmogenic cardiomyopathy: phenocopies versus disease variants // Minerva Med., 2021, vol. 112, no. 2, pp. 269–280. https://doi.org/10.23736/S0026-4806.20.06782-8

    Article  PubMed  Google Scholar 

  39. Yoneda, Z.T., Anderson, K.C., Quintana, J.A., et al., Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes, JAMA Cardiol., 2021, vol. 6, no. 12, pp. 1371—1379. https://doi.org/10.1001/jamacardio.2021.3370

    Article  PubMed  Google Scholar 

  40. Shah, R.A., Asatryan, B., Sharaf Dabbagh, G., et al., Frequency, penetrance, and variable expressivity of dilated cardiomyopathy-associated putative pathogenic gene variants in UK Biobank Participants, Circulation, 2022, vol. 146, no. 2, pp. 110–124. https://doi.org/10.1161/CIRCULATIONAHA.121.058143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Osteraas, N.D. and Lee, V.H., Neurocardiology, in Handbook of Clinical Neurology, 2017, Chapter 4, pp. 49–65. https://doi.org/10.1016/B978-0-444-63600-3.00004-0

  42. Gopinath, R. and Ayya, S.S., Neurogenic stress cardiomyopathy: what do we need to know, Ann. Card. Anaesth., 2018, vol. 21, no. 3, pp. 228–234. https://doi.org/10.4103/aca.ACA_176_17

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ripoll, J.G., Blackshear, J.L. and Díaz-Gómez, J.L., Acute cardiac complications in critical brain disease, Neurosurg. Clin. North Am., 2018, vol. 29, no. 2, pp. 281–297. https://doi.org/10.1016/j.nec.2017.11.007

    Article  Google Scholar 

  44. Ganassi, M. and Zammit, P.S., Involvement of muscle satellite cell dysfunction in neuromuscular disorders: expanding the portfolio of satellite cellopathies, Eur. J. Transl. Myol., 2022, vol. 32, no. 1. https://doi.org/10.4081/ejtm.2022.10064

  45. Shi, K., Huang, S., Li, X., et al. Effect of obesity on left ventricular remodeling and clinical outcome in Chinese patients with hypertrophic cardiomyopathy: assessed by cardiac MRI, J. Magn. Reson. Imaging, 2023, vol. 57, no. 3, pp. 800–809. https://doi.org/10.1002/jmri.28306

    Article  PubMed  Google Scholar 

  46. Nollet, E.E., Westenbrink, B.D., de Boer, R.A., et al., Unraveling the genotype—phenotype relationship in hypertrophic cardiomyopathy: obesity-related cardiac defects as a major disease modifier, J. Am. Heart. Assoc., 2020, vol. 9, no. 22. https://doi.org/10.1161/JAHA.120.018641

  47. Chen, B., Tang, W.H.W., Rodriguez, M., et al., NAFLD in cardiovascular diseases: a contributor or comorbidity?, Semin. Liver Dis., 2022, vol. 42, no. 4, pp. 465–474. https://doi.org/10.1055/s-0042-1757712

    Article  PubMed  Google Scholar 

  48. Chang, W.H., Mueller, S.H., Chung, S.C., et al., Increased burden of cardiovascular disease in people with liver disease: unequal geographical variations, risk factors and excess years of life lost, J. Transl. Med., 2022, vol. 20, no. 1, p. 2. https://doi.org/10.1186/s12967-021-03210-9

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liu, S., Yan, Z., and Liu, Q., The burden of psoriasis in China and global level from 1990 to 2019: a systematic analysis from the global burden of disease study 2019, Biomed. Res. Int., 2022. https://doi.org/10.1155/2022/3461765

  50. Gupta, A. and Madke, B., Psoriasis a cause of cardiovascular diseases: a review article, Cureus, 2022, vol. 14, no. 8. https://doi.org/10.7759/cureus.27767

  51. Filardi, T., Ghinassi, B., Di Baldassarre, A., et al., Cardiomyopathy associated with diabetes: the central role of the cardiomyocyte, Int. J. Mol. Sci., 2019, vol. 20, no. 13, p. 3299. https://doi.org/10.3390/ijms20133299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sanganalmath, S.K., Dubey, S., Veeranki, S., et al., The interplay of inflammation, exosomes and Ca2+ dynamics in diabetic cardiomyopathy, Cardiovasc. Diabetol., 2023, vol. 22, no. 1, p. 37. https://doi.org/10.1186/s12933-023-01755-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zaffran, S., Kraoua, L., and Jaouadi, H., Calcium handling in inherited cardiac diseases: a focus on catecholaminergic polymorphic ventricular tachycardia and hypertrophic cardiomyopathy, Int. J. Mol. Sci., 2023, vol. 24, no. 4. https://doi.org/10.3390/ijms24043365

  54. Volkov, V., On the period of development of neuroleptic cardiomyopathy, Vrach, 2019, vol. 30, no. 9, pp. 31–34. https://doi.org/10.29296/25877305-2019-09-05

    Article  Google Scholar 

  55. Osterlund, P., Kinos, S., Pfeiffer, P., et al., Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours: a multicentre retrospective observational cohort study, ESMO Open, 2022, vol. 7, no. 3. https://doi.org/10.1016/j.esmoop.2022.100427

  56. Thomas, S.D., Jha, N.K., Jha, S.K., et al., Pharmacological and molecular insight on the cardioprotective role of apigenin, Nutrients, 2023, vol. 15, no. 2, p. 385. https://doi.org/10.3390/nu15020385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li, M.Y., Peng, L.M., and Chen, X.P., Pharmacogenomics in drug-induced cardiotoxicity: current status and the future, Front. Cardiovasc. Med., 2022, vol. 9. https://doi.org/10.3389/fcvm.2022.966261

  58. Harding, D., Chong, M.H.A., Lahoti, N., et al., Dilated cardiomyopathy and chronic cardiac inflammation: pathogenesis, diagnosis and therapy, J. Intern. Med., 2023, vol. 293, no. 1, pp. 23–47. https://doi.org/10.1111/joim.13556

    Article  CAS  PubMed  Google Scholar 

  59. Poller, W., Kühl, U., Tschoepe, C., et al., Genome-environment interactions in the molecular pathogenesis of dilated cardiomyopathy, J. Mol. Med. (Berl.), 2005, vol. 83, no. 8, pp. 579–586. https://doi.org/10.1007/s00109-005-0664-2

    Article  CAS  PubMed  Google Scholar 

  60. Kažukauskienė, I., Baltrūnienė, V., Jakubauskas, A., et al., Prevalence and prognostic relevance of myocardial inflammation and cardiotropic viruses in non-ischemic dilated cardiomyopathy, Cardiol. J., 2022, vol. 29, no. 3, pp. 441–453. https://doi.org/10.5603/CJ.a2020.0088

    Article  PubMed  PubMed Central  Google Scholar 

  61. Welty, F.K., Rajai, N., and Amangurbanova, M., Comprehensive review of cardiovascular complications of coronavirus disease 2019 and beneficial treatments, Cardiol. Rev., 2022, vol. 30, no. 3, pp. 145—157. https://doi.org/10.1097/CRD.0000000000000422

    Article  PubMed  Google Scholar 

  62. Akhtar, Z., Trent, M., Moa, A., et al., The impact of COVID-19 and COVID vaccination on cardiovascular outcomes, Eur. Heart J. Suppl., 2023, vol. 25, suppl. A, pp. A42–A49. https://doi.org/10.1093/eurheartjsupp/suac123

  63. Goyal, M., Ray, I., Mascarenhas, D., et al., Myocarditis post-SARS-CoV-2 vaccination: A systematic review, QJM: An Intern. J. Medicine, 2023, vol. 116, no. 1, pp. 7—25. https://doi.org/10.1093/qjmed/hcac064

    Article  CAS  Google Scholar 

  64. Hammersley, D.J., Buchan, R.J., Lota, A.S., et al., Direct and indirect effect of the COVID-19 pandemic on patients with cardiomyopathy, Open Heart, 2022, vol. 9, no. 1. https://doi.org/10.1136/openhrt-2021-001918

  65. Hill, E., Mehta, H., Sharma, S., et al., Risk factors associated with post-acute sequelae of SARS-CoV-2 in an EHR cohort: a National COVID Cohort Collaborative (N3C) analysis as part of the NIH RECOVER program, medRxiv, 2022. https://doi.org/10.1101/2022.08.15.22278603

  66. Lu, J.F., Fan, Z.X., Li, Y., et al., Risk factors, clinical features, and outcomes of patients with hypertrophic cardiomyopathy complicated by ischemic stroke: a single-center retrospective study, Front. Cardiovasc. Med., 2022, vol. 9. https://doi.org/10.3389/fcvm.2022.1054199

  67. Gyftopoulos, A., Chen, Y.J., Wang, L., et al., Identification of novel genetic variants and comorbidities associated with ICD-10-based diagnosis of hypertrophic cardiomyopathy using the UK Biobank Cohort, Front. Genet., 2022, vol. 13. https://doi.org/10.3389/fgene.2022.866042

  68. Pogran, E., Abd El-Razek, A., Gargiulo, L., et al., Long-term outcome in patients with Takotsubo syndrome: a single center study from Vienna, Wien Klin. Wochenschr., 2022, vol. 134, nos. 7—8, pp. 261—268. https://doi.org/10.1007/s00508-021-01925-9

    Article  PubMed  Google Scholar 

  69. Palasca, O., Santos, A., Stolte, C., et al., TISSUES 2.0: an integrative web resource on mammalian tissue expression, Database (Oxford), 2018, vol. 2018, no. 7, p. bay003. https://doi.org/10.1093/database/bay003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zheng, Q.X., Wang, J., Gu, X.Y., et al., TTN-AS1 as a potential diagnostic and prognostic biomarker for multiple cancers, Biomed. Pharmacother., 2012, vol. 135. https://doi.org/10.1016/j.biopha.2020.111169

  71. Biswas, A., Nath, S.D., Ahsan, T., et al., TTN as a candidate gene for distal arthrogryposis type 10 pathogenesis, J. Genet. Eng. Biotechnol., 2022, vol. 20, no. 1, p. 119. https://doi.org/10.1186/s43141-022-00405-5

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rai, B., Naylor, P., Sanchez, M.S., et al., Novel effects of Ras-MAPK pathogenic variants on the develo** human brain and their link to gene expression and inhibition abilities [Preprint], Res. Sq., 2023. https://doi.org/10.1038/s41398-023-02504-4

  73. Gao, J., Liu, H., Wang, X., et al., Associative analysis of multi-omics data indicates that acetylation modification is widely involved in cigarette smoke-induced chronic obstructive pulmonary disease, Front. Med. (Lausanne), 2023, vol. 9. https://doi.org/10.3389/fmed.2022.1030644

  74. Chen, J., Wen, Y., Su, H., et al., Deciphering prognostic value of TTN and its correlation with immune infiltration in lung adenocarcinoma, Front. Oncol., 2022, vol. 12. https://doi.org/10.3389/fonc.2022.877878

  75. **e, S. and Wang, X., CRYAB reduces cigarette smoke-induced inflammation, apoptosis, and oxidative stress by retarding PI3K/Akt and NF-κB signaling pathways in human bronchial epithelial cells, Allergol. Immunopathol. (Madr.), 2022, vol. 50, no. 5, pp. 23–29. https://doi.org/10.15586/aei.v50i5.645

    Article  Google Scholar 

  76. Becerra-Hernández, L.V., Escobar-Betancourt, M.I., Pimienta-Jiménez, H.J., and Buriticá, E., Crystallin alpha-B overexpression as a possible marker of reactive astrogliosis in human cerebral contusions, Front. Cell Neurosci., 2022, vol. 16. https://doi.org/10.3389/fncel.2022.838551m

  77. Parnell, L.D., Magadmi, R., Zwanger, S., et al., Dietary responses of dementia-related genes encoding metabolic enzymes, Nutrients, 2023, vol. 15, no. 3. https://doi.org/10.3390/nu15030644

  78. Yao, L., Lin, K., Zheng, Z., et al., Bioinformatic analysis of genetic factors from human blood samples and postmortem brains in Parkinson’s disease, Oxid. Med. Cell Longev., 2022. https://doi.org/10.1155/2022/9235358

  79. Liang, L., Yan, J., Huang, X., et al., Identification of molecular signatures associated with sleep disorder and Alzheimer’s disease, Front. Psychiatry, 2022, vol. 13, p. 925012. https://doi.org/10.3389/fpsyt.2022.925012

    Article  PubMed  PubMed Central  Google Scholar 

  80. Rahman, M.R., Islam, T., Zaman, T., et al., Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: insights from a systems biomedicine perspective, Genomics, 2020, vol. 112, no. 2, pp. 1290–1299. https://doi.org/10.1016/j.ygeno.2019.07.018

    Article  CAS  PubMed  Google Scholar 

  81. Giannos, P., Prokopidis, K., Raleigh, S.M., et al., Altered mitochondrial microenvironment at the spotlight of musculoskeletal aging and Alzheimer’s disease, Sci. Rep., 2022, vol. 12, no. 1, p. 11290. https://doi.org/10.1038/s41598-022-15578-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zheng, H., Qian, X., Tian, W., and Cao, L., Exploration of the common gene characteristics and molecular mechanism of Parkinson’s disease and Crohn’s disease from transcriptome data, Brain Sci., 2022, vol. 12, no. 6, p. 774. https://doi.org/10.3390/brainsci12060774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen, S., Chen, L., and Jiang, H., Integrated bioinformatics and clinical correlation analysis of key genes, pathways, and potential therapeutic agents related to diabetic nephropathy, Dis. Markers, 2022. https://doi.org/10.1155/2022/9204201

  84. Diao, M., Wu, Y., Yang, J., et al., Identification of novel key molecular signatures in the pathogenesis of experimental diabetic kidney disease, Front. Endocrinol. (Lausanne), 2022, vol. 13. https://doi.org/10.3389/fendo.2022.843721

  85. Wu, C., Tan, S., Liu, L., et al., Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis, Arthritis Res. Ther., 2022, vol. 23, p. 38. https://doi.org/10.1186/s13075-021-02419-9

    Article  CAS  Google Scholar 

  86. Carruthers, N.J., Strieder-Barboza, C., Caruso, J.A., et al., The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity, Sci. Rep., 2021, vol. 11, no. 1, p. 17394. https://doi.org/10.1038/s41598-021-96995-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gou, W., Wei, H., Swaby, L., et al., Deletion of spinophilin promotes white adipocyte browning, Pharmaceuticals (Basel), 2023, vol. 16, no. 1, p. 91. https://doi.org/10.3390/ph16010091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. **ao, M., Zhang, Y., and Xu, X., Calorie restriction combined with high-intensity interval training promotes browning of white adipose tissue by activating the PPARγ/PGC-1α/UCP1 pathway, Altern. Ther. Health Med., 2023, vol. 29, no. 3, pp. 134–139.

    PubMed  Google Scholar 

  89. Zhang, Y., Qi, J., Zhao, J., et al., Effect of dietetic obesity on testicular transcriptome in cynomolgus monkeys, Genes (Basel), 2023, vol. 14, no. 3. https://doi.org/10.3390/genes14030557

  90. Mishra, B.K., Madhu, S.V., Aslam, M., et al., Adipose tissue expression of UCP1 and PRDM16 genes and their association with postprandial triglyceride metabolism and glucose intolerance, Diabetes Res. Clin. Pract., 2021, vol. 182. https://doi.org/10.1016/j.diabres.2021.109115

  91. Li, X., Lu, Y., Zhang, L., Song, A., et al., Primary and secondary hyperparathyroidism present different expressions of calcium-sensing receptor, BMC Surg., 2023, vol. 23, no. 1, p. 31. https://doi.org/10.1186/s12893-023-01928-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, R., Zhang, J., Wang, Q., et al., TPM1 mediates inflammation downstream of TREM2 via the PKA/CREB signaling pathway, J. Neuroinflammation, 2022, vol. 19, no. 1, p. 257. https://doi.org/10.1186/s12974-022-02619-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. He, X., Wang, T., Ran, N., et al., MicroRNA-21-5p regulates CD3+T lymphocytes through VCL and LTF in patients with immune thrombocytopenia, Clin. Lab., 2022, vol. 68, no. 7. https://doi.org/10.7754/Clin.Lab.2021.210907

  94. Wang, R., **ao, Y., Pan, M., et al., Integrative analysis of bulk RNA-Seq and single-cell RNA-Seq unveils the characteristics of the immune microenvironment and prognosis signature in prostate cancer, J. Oncol., 2022. https://doi.org/10.1155/2022/6768139

  95. Yu, N., Zhang, J., Phillips, S.T., et al., Impaired function of epithelial plakophilin-2 is associated with periodontal disease, J. Periodontal Res., 2021, vol. 56, no. 6, pp. 1046–1057. https://doi.org/10.1111/jre.12918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, M., Li, J., Yin, Y., et al., Network pharmacology and in vivo experiment-based strategy to investigate mechanisms of **gFangFuZiLiZhong formula for ulcerative colitis, Ann. Med., 2022, vol. 54, no. 1, pp. 3219–3233. https://doi.org/10.1080/07853890.2022.2095665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Iacucci, M., Jeffery, L., Acharjee, A., et al., Computer-aided imaging analysis of probe-based confocal laser endomicroscopy with molecular labeling and gene expression identifies markers of response to biological therapy in IBD patients: the endo-omics study, Inflammation Bowel Dis., 2022. https://doi.org/10.1093/ibd/izac233

  98. Tsygvintsev, A.A., Lischuk, A.N., Storozhilov, V.A., and Ivanov, D.V., Reversable dilation of heart cavities as a marker of new opportunities in the therapy of inflammatory and dilated cardiomyopathy, Vestn. Nov. Med. Tekhnol., 2019, vol. 26, no. 4, pp. 29–34. https://doi.org/10.24411/1609-2163-2019-16526

    Article  Google Scholar 

Download references

Funding

This study was supported by the State Task of the Ministry of Science and Higher Education no. 122020300041-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Nazarenko.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Novikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucher, A.N., Nazarenko, M.S. The Scope of Mendelian Cardiomyopathy Genes. Russ J Genet 60, 32–48 (2024). https://doi.org/10.1134/S1022795424010101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795424010101

Keywords:

Navigation