Log in

Study of the Genotoxicity of Beta-Propiolactone Using Lux Biosensors E. coli and the Nematode Caenorhabditis elegans

  • GENERAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

For the first time, lux biosensors of E. coli and the nematode Caenorhabditis elegans were used to study the genotoxicity of beta-propiolactone (BPL) used in the production of inactivated viral vaccines as an inactivator. It has been shown that the DNA-damaging activity of BPL is due not only to its ability to bind to bacterial DNA, but also to the ability to generate in the cell reactive oxygen species such as superoxide anions and peroxide, which have genotoxic activity. It was found that BPL in a dose-dependent manner, starting from a concentration of 0.001 mol/L, reduces the survival of bacteria. However, the intensity of expression of the antioxidant defense gene of superoxide dismutase soxS and the DNA repair gene colD increased. BPL-induced DNA breaks in nematode cells were detected by electrophoresis. The antioxidant acetylcysteine reduced the genotoxic effects of BPL on both bacteria and the nematode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Sanders, B., Koldijk, M., and Schuitemaker, H., Inactivated viral vaccines, Vaccine Analysis: Strategies, Principles, and Control, Berlin: Springer-Verlag, 2015, pp. 45—80.

    Google Scholar 

  2. Lawrence, S.A., Beta-propiolactone: viral inactivation in vaccines and plasma products, PDA J. Pharm Sci. Technol., 2000, vol. 54, pp. 209—214.

    CAS  PubMed  Google Scholar 

  3. Kurashova, S.S., Ishmukhametov, A.A., Egorova, M.S., et al., Comparative characteristics of inactivating agents for the development of a vaccine against hemorrhagic fever with renal syndrome, Epidemiol. Vaktsinoprofil., 2018, vol. 17, no. 4, pp. 26—29. https://doi.org/10.31631/2073-3046-2018-17-4-26-29

    Article  Google Scholar 

  4. Colburn, N.H., Richardson, R.G., and Boutwell, R.K., Studies of the reaction of β-propiolactone with deoxyguanosine and related compounds, Biochem. Pharmacol., 1965, vol. 14, pp. 1113—1118.

    Article  CAS  PubMed  Google Scholar 

  5. β-Propiolactone, in IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Lion: IARC, 1999, vol. 71, pp. 1103—1118.

  6. Perrin, P. and Morgeaux, S., Inactivation of DNA by β-propiolactone, Biologicals, 1995, vol. 23, pp. 207—211.

    Article  CAS  PubMed  Google Scholar 

  7. Taubman, M.A. and Atassi, M.Z., Reaction of beta-propiolactone with amino acids and its specificity for methionine, Biochem. J., 1968, vol. 106, pp. 829—834. https://doi.org/10.1042/bj1060829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lawley, P.D. and Brookes, P., Further studies on the alkylation nucleic acids and their constituent nucleotides, Biochem. J., 1963, vol. 89, pp. 127—138. https://doi.org/10.1042/bj0890127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Penman, B.W., Hoppe, H., and Thilly, W.G., Concentration-dependent mutation by alkylating agents in human lymphoblasts and Salmonella typhimurium: N-methyl-N-nitrosourethane and beta-propiolactone, J. Natl. Cancer Inst., 1979, vol. 63, pp. 903—907.

    CAS  PubMed  Google Scholar 

  10. Kortselius, M.J., Induction of sex-linked recessive lethals and autosomal translocations by beta-propiolactone in Drosophila: influence of the route of administration on mutagenic activity, Mut. Res., 1979, vol. 66, pp. 55—63. https://doi.org/10.1016/0165-1218(79)90007-7

    Article  CAS  Google Scholar 

  11. Shamberger, R.J, Corlett, C.L, Beaman, D., and Kasten, B.L., Antioxidants reduce the mutagenic effect of malonaldehyde and beta-propiolactone: IX. Antioxidants and cancer, Mut. Res., 1979, vol. 66, pp. 349—355. https://doi.org/10.1016/0165-1218(79)90045-4

    Article  CAS  Google Scholar 

  12. Benning, V., Brault, D., Duvinage, C., et al., Validation of the in vivo CD1 mouse splenocyte micronucleus test, Mutagenesis, 1994, vol. 9, pp. 199—204. https://doi.org/10.1093/mutage/9.3.199

    Article  CAS  PubMed  Google Scholar 

  13. Klein, C.B. and Rossman, T.G., Transgenic Chinese hamster V79 cell lines which exhibit variable levels of gpt mutagenesis, Environ. Mol. Mutagen., 1990, vol. 16, pp. 1—12. https://doi.org/10.1002/em.2850160102

    Article  PubMed  Google Scholar 

  14. Brusick, D., The genetic properties of β-propiolactone, Mut. Res., 1976, vol. 39, pp. 241—255.

    Article  Google Scholar 

  15. Santaló, J., Estop, A.M., and Egozcue, J., Genotoxic effect of beta-propiolactone on mammalian oocytes, Mut. Res., 1987, vol. 189, pp. 407—416. https://doi.org/10.1016/0165-1218(87)90050-4

    Article  Google Scholar 

  16. Brault, D., Renault, D., Tombolan, F., and Thybaud, V., Kinetics of induction of DNA damage and lacZ gene mutations in stomach mucosa of mice treated with beta-propiolactone and N-methyl-N'-nitro-N-nitrosoguanidine, using single-cell gel electrophoresis and MutaMouse models, Environ. Mol. Mutagen., 1999, vol. 34, pp. 182—189.

    Article  CAS  PubMed  Google Scholar 

  17. Snyder, C.A., Garte, S.J., Sellakumar, A.R., and Albert, R.E., Relationships between the levels of binding to DNA and the carcinogenic potencies in rat nasal mucosa for three alkylating agents, Cancer Lett., 1986, vol. 33, pp. 175—181. https://doi.org/10.1016/0304-3835(86)90022-4

    Article  CAS  PubMed  Google Scholar 

  18. Kotova, V.Yu., Manukhov, I.V., and Zavilgelsky, G.B., Lux biosensors for detecting SOS response, heat shock and oxidative stress, Biotekhnologiya, 2009, no. 6, pp.16—25. https://doi.org/10.1134/S0003683810080089

  19. Zavilgelsky, G.B., Kotova, V.Yu., and Manukhov, I.V., Sensor bioluminescent systems based on lux operons for the toxic substances detection, Khim. Fiz., 2012, vol. 31, no. 10, pp. 15—20.

    Google Scholar 

  20. Meneely, P.M., Dahlberg, C.L., and Rose, J.K., Working with worms: Caenorhabditis elegans as a model organism, Curr. Protoc. Essent. Lab. Tech., 2019, vol. 19. e35. https://doi.org/10.1002/cpet.35

    Article  Google Scholar 

  21. Imanikia, S., Galea, F., Nagy, E., et al., The application of the comet assay to assess the genotoxicity of environmental pollutants in the nematode Caenorhabditis elegans, Environ. Toxicol. Pharmacol., 2016, vol. 7, no. 45, pp. 356—361. https://doi.org/10.1016/j.etap.2016.06.020

    Article  CAS  Google Scholar 

  22. Zavilgelsky, G.B., 60 years of SOS repair, Mol. Biol. (Moscow), 2013, vol. 17, no. 5, pp. 605—612. https://doi.org/10.1134/S0026893313050221

    Article  CAS  Google Scholar 

  23. Maslowska, K.H., Makiela Dzbenska, K. and Fijalkowska, I.J., The SOS system: a complex and tightly regulated response to DNA damage, Environ. Mol. Mutagen., 2019, vol. 60, no. 4, pp. 368—384. https://doi.org/10.1002/em.22267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Baharoglu, Z. and Mazel, D., SOS, the formidable strategy of bacteria against aggressions, FEMS Microbiol. Rev., 2014, vol. 38, no. 6, pp. 1126—1145. https://doi.org/10.1002/em.22267

    Article  CAS  PubMed  Google Scholar 

  25. Sedgwick, B., Batesb, P.A., Paik, J., et al., Repair of alkylated DNA: recent advances, DNA Repair, 2007, vol. 6, no. 4, pp. 429—442. https://doi.org/10.1016/j.dnarep.2006.10.005

    Article  CAS  PubMed  Google Scholar 

  26. Mielecki, D. and Grzesiuk, E., Ada response—a strategy for repair of alkylated DNA in bacteria, FEMS Microbiol. Lett., 2014, vol. 355, no. 1, pp. 1—11. https://doi.org/10.1111/1574-6968

    Article  CAS  PubMed  Google Scholar 

  27. Mielecki, D., Wrzesiński M., and Grzesiuk, E., Inducible repair of alkylated DNA in microorganisms, Mut. Res., 2015, vol. 763, pp. 294—305. https://doi.org/10.1016/j.mrrev.2014.12.001

    Article  CAS  Google Scholar 

  28. Ordzhonikidze, K.G., Igonina, E.V., Zhoshibekova, B.S., and Abilev, S.K., Comparative study of the DNA-damaging activity of epichlorohydrin using Escherichia coli biosensors and the comet assay method in mice, Russ. J. Genet., 2021, vol. 57, no. 9, pp. 1035—1041. https://doi.org/10.1134/S1022795421090088

    Article  CAS  Google Scholar 

  29. Machigov, E.A., Igonina, E.V., Sviridova, D.A., et al., Genotoxic effect of paraquat radiomimetic on Escherichia coli bacteria, Rad. Biol. Radioekol., 2022, vol. 62, no. 3, pp. 240—249. https://doi.org/10.31857/S0869803122030055

    Article  Google Scholar 

  30. Sviridova, D.A., Machigov, E.A., Igonina, E.V., et al., Study of the dioxidine genotoxicity using Escherichia coli lux biosensors, Rad. Biol. Radioekol., 2020, vol. 60, no. 6, pp. 595—603. https://doi.org/10.31857/S0869803120060223

    Article  Google Scholar 

  31. Hartman, J.H., Widmayer, S.J., Christina, M., et al., Xenobiotic metabolism and transport in Caenorhabditis elegans, J. Toxicol. Environ. Health, Part B, 2021, vol. 24, no. 2, pp. 51—94. https://doi.org/10.1080/10937404.2021.1884921

    Article  CAS  Google Scholar 

  32. Harlow, P.H., Perry, S.J., Alexander, J., et al., Comparative metabolism of xenobiotic chemicals by cytochrome P450s in the nematode Caenorhabditis elegans, Nat. Sci. Rep., 2018, vol. 8, p. 13333.https://doi.org/10.1038/s41598-018-31215-w

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Abilev.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals have been followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machigov, E.A., Abilev, S.K., Igonina, E.V. et al. Study of the Genotoxicity of Beta-Propiolactone Using Lux Biosensors E. coli and the Nematode Caenorhabditis elegans. Russ J Genet 59, 432–440 (2023). https://doi.org/10.1134/S1022795423040075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423040075

Keywords:

Navigation