Log in

Genetic Diversity of Juniperus communis L. in Eurasia and Alaska Inferred from Nuclear Microsatellite Markers

  • PLANT GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The structure of genetic variation of the common juniper (Juniperus communis L.), a widespread wind-pollinated holarctic shrub of Cupressaceae was surveyed. We used seven microsatellite markers, including three new ones, to genotype samples from 23 Eurasian populations and one from North America (Alaska). The geographical patterns are interpreted jointly with our previously available chloroplast DNA data. High genetic diversity was revealed with the highest values in the same northern populations (Sweden, Estonia, Mezen, Polar Urals, Yamal, and Kolyma, as well as in the Alps) as previously identified by cpDNA analysis. Nuclear markers exhibited a lower level of interpopulation differentiation (FST = 9.8%) than chloroplast markers (FST = 76%). Bayesian cluster analysis showed that the optimal number of genetic groups (K) was two. All 24 populations of J. communis were divided into an eastern group (the Northeast and Far East of Russia, Alaska, and the Himalayas) and a western group (Europe, the Urals, and Siberia). In the Alpine and Mt. Shoria populations, genotypes from different genetic groups are combined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Petit, R.J., Aguinagalde, I., de Beaulieu, J.L., et al., Glacial refugia: hotspots but not melting pots of genetic diversity, Science, 2003, vol. 300, pp. 1563—1565. https://doi.org/10.1126/science.1083264

    Article  CAS  PubMed  Google Scholar 

  2. Tribsch, A. and Stuessy, T., Evolution and phylogeography of arctic and alpine plants in Europe: introduction, Taxon, 2003, vol. 52, pp. 415—416. https://doi.org/10.2307/3647443

    Article  Google Scholar 

  3. Tarasov, P.E., Volkova, V.S., Webb, T., et al., Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia, J. Biogeogr., 2000, vol. 27, pp. 609—620. https://doi.org/10.1046/j.1365-2699.2000.00429.x

    Article  Google Scholar 

  4. Maliouchenko, O., Palmé, A.E., Buonamici, A., et al., Comparative phylogeography of two European birch species, Betula pendula and B. pubescens, with high level of haplotype sharing, J. Biogeogr., 2007, vol. 34, pp. 1601—1610. https://doi.org/10.1111/j.1365-2699.2007.01729.x

    Article  Google Scholar 

  5. Gonçalves, A., Flores-Félix, J.D., Coutinho, P., et al., Zimbro (Juniperus communis L.) as a promising source of bioactive compounds and biomedical activities: a review on recent trends, Int. J. Mol. Sci., 2022, vol. 23, no. 6, p. 3197. https://doi.org/10.3390/ijms23063197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farjon, A.A., World Checklist and Bibliography of Conifers, Kew: The Royal Botanical Gardens, 2001, 2nd ed.

    Google Scholar 

  7. Clifton, S.J., Ward, L.K., and Ranner, D.S., The status of juniper Juniperus communis L. in north-east England, Biol. Conserv., 1997, vol. 79, pp. 67—77. https://doi.org/10.1016/S0006-3207(96)00101-2

    Article  Google Scholar 

  8. McBride, A., The status of common juniper (Juniperus communis L.) in the Scottish borders, Scott. For., 1998, vol. 52, pp. 178—182.

    Google Scholar 

  9. Oostermeijer, J.G.B. and Knegt, B., Genetic population structure of wind-pollinated dioecious shrub Juniperus communis in fragmented Dutch heathlands, Plant Species Biol., 2004, vol. 19, pp. 175—184. https://doi.org/10.1111/j.1442-1984.2004.00113.x

    Article  Google Scholar 

  10. Filipowicz, N., Piotrowski, A., Ochocka, R., and Aszemborska, M., The phytochemical and genetic survey of common and dwarf juniper (Juniperus communis and Juniperus nana) identifies chemical races and close taxonomic identity of the species, Planta Med., 2006, vol. 72, pp. 850—853. https://doi.org/10.1055/s-2006-941543

    Article  CAS  PubMed  Google Scholar 

  11. Provan, J., Hunter, A.M., McDonald, R.A., et al., Restricted gene flow in fragmented population of a wind-pollinated tree, Conserv. Genet., 2000, vol. 9, no. 6, pp. 1521—1532. https://doi.org/10.1007/s10592-007-9484-y

    Article  Google Scholar 

  12. Van der Merwe, M., Winfield, M.O., Arnold, G.M., and Parker, J.S., Spatial and temporal aspects of the genetic structure of Juniperus communis populations, Mol. Ecol., 2000, vol. 9, pp. 379—386. https://doi.org/10.1046/j.1365-294x.2000.00868.x

    Article  CAS  Google Scholar 

  13. Hamrick, J.L. and Godt, M.J.W., Effects of life history traits on genetic diversity in plant species, Philos. Trans R. Soc., B, 1996, vol. 351, no. 1345, pp. 1291—1298. https://doi.org/10.1098/rstb.1996.0112

  14. Michalczyk, I.M., Sebastiani, I.F., Buonamici, A., et al., Characterization of highly polymorphic nuclear microsatellite loci in Juniperus communis L., Mol. Ecol. Notes, 2006, vol. 6, pp. 346—348. https://doi.org/10.1111/j.1471-8286.2005.01227.x

    Article  CAS  Google Scholar 

  15. Reim, S., Lochschmidt, F., Proft, A., et al., Genetic structure and diversity in Juniperus communis populations in Saxony, Germany, Biodiversity Conserv., 2016, vol. 42, pp. 9—18. https://doi.org/10.1515/biorc-2016-0008

    Article  Google Scholar 

  16. Jacquemart, A.L., Buyens, C., Delescaille, L.-M., and Rossum, F.V., Using genetic evaluation to guide conservation of remnant Juniperus communis (Cupressaceae) populations, Plant Biol., 2021, vol. 23, no. 1, pp. 193—204. https://doi.org/10.1111/plb.13188

    Article  CAS  PubMed  Google Scholar 

  17. Hantemirova, E.V., Heinze, B., Knyazeva, S.G., et al., A new Eurasian phylogeographical paradigm? Limited contribution of southern populations of the recolonization of high latitude populations in Juniperus communis L. (Cupressaceae), J. Biogeogr., 2017, vol. 44, no. 2, pp. 271—282.https://doi.org/10.1111/jbi.12867

  18. Zhang, Q., Yang, Y.Z., Wu, G.L., et al., Isolation and characterization of microsatellite DNA primers in Juniperus przewalskii Kom. (Cupressaceae), Conserv. Genet., 2008, vol. 9, pp. 767—769. https://doi.org/10.1007/s10592-007-9387-y

    Article  CAS  Google Scholar 

  19. Rumeu, B., Sosa, P.A., Nogales, M., and Gonzalez-Perez, M.A., Development and characterization of 13 SSR markers for an endangered insular juniper (Juniperus cedrus Webb & Berth.), Conserv. Genet. Resour., 2013, vol. 5, pp. 457—459. https://doi.org/10.1007/s12686-012-9827-y

    Article  Google Scholar 

  20. Raymond, M. and Rousset, F., GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism, J. Hered., 1995, vol. 86, pp. 248—249. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  Google Scholar 

  21. Brookfield, J., A simple new method for estimating null allele frequency from heterozygote deficiency, Mol. Ecol., 1996, vol. 5, pp. 453—455. https://doi.org/10.1046/j.1365-294X.1996.00098.x

    Article  CAS  PubMed  Google Scholar 

  22. Oosterhout, C.V., Hutchinson, W.F., Wills, D.P.M., and Shipley, P., Micro-checker: software for identifying and correcting genoty** errors in microsatellite data, Mol. Ecol. Notes, 2004, vol. 4, pp. 535—538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  23. Excoffier, L. and Lischer, H., Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564—567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  24. Nei, M., Tajima, F., and Tateno, Y., Accuracy of estimated phylogenetic trees from molecular data, J. Mol. Evol., 1983, vol. 19, pp. 153—170. https://doi.org/10.1007/BF02300753

    Article  CAS  PubMed  Google Scholar 

  25. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945—959. https://doi.org/10.1093/genetics/155.2.945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Earl, D. and von Holdt, B., Structure harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Resour., 2012, vol. 4, pp. 359—361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  27. Dupanloup, I., Schneider, S., and Excoffier, L., A simulated annealing approach to define the genetic structure of populations, Mol. Ecol., 2002, vol.11, pp. 2571—2581. https://doi.org/10.1046/j.1365-294X.2002.01650.x

    Article  CAS  PubMed  Google Scholar 

  28. Mantel, N.A., The detection of disease clustering and generalized regression approach, Cancer Res., 1967, vol. 27, pp. 209—220.

    CAS  PubMed  Google Scholar 

  29. Vanden Broeck, A., Gruwez, R., Cox, K., et al., Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: a case study for Juniperus communis in northwestern Europe, BMC Genet., 2011, vol. 12, pp. 1—7. https://doi.org/10.1186/1471-2156-12-73

    Article  Google Scholar 

  30. Ritland, C., Pape, T., and Ritland, K., Genetic structure of yellow cedar (Chamaecyparis nootkatensis), Can. J. Bot., 2001, vol. 79, pp. 822—828. https://doi.org/10.1139/b01-053

    Article  Google Scholar 

  31. Somme, L., Mayer, C., Rasp, E.O., and Jacquemart, A.L., Influence of spatial distribution and size of clones on the realized outcrossing rate of the marsh cinquefoil (Comarum palustre), Ann. Bot., 2014, vol. 113, pp. 477—487. https://doi.org/10.1093/aob/mct280

    Article  CAS  PubMed  Google Scholar 

  32. Egorova, I.A., A brief outline of the history of the formation of modern vegetation in Kamchatka, in Kamchatka: sobytiya, lyudi (Kamchatka: Events, People) (Materials of XXV Krasheninnikov Readings), Petropavlovsk-Kamchatskii, 2008, pp. 88—93.

    Google Scholar 

  33. Hantemirova, E.V. and Marchuk, E.A., Phylogeography and genetic structure of a subarctic-alpine shrub species, Alnus alnobetula (Ehrh.) K. Koch s. l., inferred from chloroplast DNA markers, Tree Genet. Genomes, 2021, vol. 17, p. 18. https://doi.org/10.1007/s11295-021-01503-0

    Article  CAS  Google Scholar 

  34. Polezhaeva, M.A., Lascoux, M., and Semerikov, V.L., Cytoplasmic DNA variation and biogeography of Larix Mill. in Northeast Asia, Mol. Ecol., 2010, vol. 19, pp. 1239—1252. https://doi.org/10.1111/j.1365-294x.2010.04552.x

    Article  PubMed  Google Scholar 

  35. Fedorov, V., Goropashnaya, A.V., Boeskorov, G.G., and Cook, J.A., Comparative phylogeography and demographic history of the wood lemming (Myopus schisticolor): implications for late Quaternary history of the taiga species in Eurasia, Mol. Ecol., 2008, vol. 17, pp. 598—610. https://doi.org/10.1111/j.1365-294x.2007.03595.x

    Article  CAS  PubMed  Google Scholar 

  36. Myers, N., Mittermeier, R.A., Mittermeier, C.G., et al., Biodiversity hotspots for conservation priorities, Nature, 2000, vol. 403, pp. 853—858. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, J.-Q., Meng, S.-Y., Allen, G.A., et al., Rapid radiation and dispersal out of the Qinghai-Tibetan Plateau of an alpine plant lineage Rhodiola (Crassulaceae), Mol. Phylogenet. Evol., 2014, vol. 77, pp. 147—158. https://doi.org/10.1016/j.ympev.2014.04.013

    Article  PubMed  Google Scholar 

  38. Zhang, H.J., Feng, T., Landis, J.B., et al., Molecular phylogeography and ecological niche modeling of Sibbaldia procumbens s.l. (Rosaceae), Front. Genet., 2019, vol. 10, p. 201. https://doi.org/10.3389/fgene.2019.00201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jia, D.R., Abbott, R.J., Liu, T.L., et al., Out of the Qinghai-Tibet Plateau: evidence for the origin and dispersal of Eurasian temperate plants from a phylogeographic study of Hippophae rhamnoides (Elaeagnaceae), New Phytol., 2012, vol. 194, pp. 1123—1133. https://doi.org/10.1111/j.1469-8137.2012.04115.x

    Article  PubMed  Google Scholar 

  40. Michalczyk, I.M., Opgenoorth, L., Luecke, Y., et al., Genetic support for perglacial survival of Juniperus communis L. in Central Europe, Holocene, 2010, vol. 20, no. 6, pp. 887—894. https://doi.org/10.1177/0959683610365943

    Article  Google Scholar 

  41. Schönswetter, P., Stehlik, I., Holderegger, R., and Tribsch, A., Molecular evidence for glacial refugia of mountain plants in the European Alps, Mol. Ecol., 2005, vol. 14, pp. 3547—3555. https://doi.org/10.1111/j.1365-294X.2005.02683.x

    Article  CAS  PubMed  Google Scholar 

  42. Shuvaev, D.N. and Ibe, A.A., Genetic structure and postglacial recolonization of Pinus sibirica Du Tour in the West Siberian Plain, inferred from nuclear microsatellite markers, Silvae Genet., 2021, vol. 70, pp. 99—107. https://doi.org/10.2478/sg-2021-0008

    Article  Google Scholar 

  43. Mao, K., Hao, G., Liu, J., et al., Diversification and biogeography of Juniperus (Cupressaceae): variable diversification rates and multiple intercontinental dispersals, New Phytol., 2010, vol. 188, pp. 254—272. https://doi.org/10.1111/j.1469-8137.2010.03351.x

    Article  CAS  PubMed  Google Scholar 

  44. Velichko, A.A., Prirodnyi protsess v pleistotsene (Natural Process in the Pleistocene), Moscow, 1973.

    Google Scholar 

  45. Elias, S.A., Short, S.K., and Birks, H.H., Late Wisconsin environments of the Bering Land Bridge, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1997, vol. 136, pp. 293—308.

    Article  Google Scholar 

  46. Tsutsui, K., Suwa, A., Sawada, K.S., et al., Incongruence among mitochondrial, chloroplast and nuclear gene trees in Pinus subgenus Strobus (Pinaceae), J. Plant. Res., 2009, vol. 122, pp. 509—521. https://doi.org/10.1007/s10265-009-0246-4

    Article  CAS  PubMed  Google Scholar 

  47. Gernandt, D.S., Lopez, G.G., Garcia, S.O., and Liston, A., Phylogeny and classification of Pinus, Taxon, 2005, vol. 54. no. 1, pp. 29—42. https://doi.org/10.2307/25065300

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank M.A. Gurskaya, A.A. Galimova, E.A. Marchuk, M.A. Polezhaeva, and D.R. Yunusova for help in collecting material.

Funding

This work was carried out within the framework of a state order to the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, no. 122021000090-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Hantemirova.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies using animals or human beings.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hantemirova, E.V., Bessonova, V.A. Genetic Diversity of Juniperus communis L. in Eurasia and Alaska Inferred from Nuclear Microsatellite Markers. Russ J Genet 59, 271–280 (2023). https://doi.org/10.1134/S1022795423030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423030055

Keywords:

Navigation