Log in

The Polymorphic Locus rs167479 of the RGL3 Gene Is Associated with the Risk of Severe Preeclampsia

  • HUMAN GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

In this work, the associations of polymorphism of candidate genes of arterial hypertension with the development of severe preeclampsia (PE) in the population of the Central Chernozem region of Russia were studied. Genoty** of five polymorphic variants (rs1799945 of the HFE gene, rs8068318 of the TBX2 gene, rs1173771 of the AC025459.1 gene, rs932764 of the PLCE1 gene, rs167479 of the RGL3 gene) was performed in 217 women with severe PE and 235 pregnant women with moderate PE. It was revealed that the G allele and the GG genotype of the rs167479 polymorphic locus of the RGL3 gene were associated with the risk of severe PE according to allelic (OR = 1.35, рperm = 0.02), additive (OR = 1.36, рperm = 0.02), and recessive (OR = 1.61, рperm = 0.04) genetic models. It has been established that this polymorphic locus is localized in a functionally active region of the genome that performs the functions of enhancers and promoters in various organs and tissues, is an area of hypersensitivity to DNase-1 and a binding site with nine transcription regulatory factors, and is associated with the expression level of the CTC-510F12.3 gene in the pituitary gland. In addition, rs167479 identifies a missense mutation that leads to the substitution of the amino acid Pro162His in the RalGDS-like3 protein and has a predictor potential of “PROBABLY DAMAGING.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Michalczyk, M., Celewicz, A., Celewicz, M., et al., The role of inflammation in the pathogenesis of preeclampsia, Mediators Inflammation, 2020, vol. 10, p. 3864941. https://doi.org/10.1155/2020/3864941

    Article  Google Scholar 

  2. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin Summary, Number 222, Obstet. Gynecol., 2020, vol. 135, no. 6, pp. 1492—1495. https://doi.org/10.1097/AOG.0000000000003892

    Article  Google Scholar 

  3. Serebrova, V.N., Trifonova, E.A., and Stepanov, V.A., Pregnancy as a factor of adaptive human evolution: the role of natural selection in the origin of preeclampsia, Russ. J. Genet., 2021, vol. 57, no. 1, pp. 23—35. https://doi.org/10.1134/S1022795421010142

    Article  Google Scholar 

  4. Turbeville, H.R. and Sasser, J.M., Preeclampsia beyond pregnancy: long-term consequences for mother and child, Am. J. Physiol.: Renal Physiol., 2020, vol. 318, no. 6, pp. F1315—F1326. https://doi.org/10.1152/ajprenal.00071.2020

    Article  Google Scholar 

  5. Chourdakis, E., Oikonomou, N., Fouzas, S., et al., Preeclampsia emerging as a risk factor of cardiovascular disease in women, High Blood Pressure Cardiovasc. Prev., 2021, vol. 28, no. 2, pp. 103—114. https://doi.org/10.1007/s40292-020-00425-7

    Article  Google Scholar 

  6. Mendola, P., Mumford, S.L., Männistö, T.I., et al., Controlled direct effects of preeclampsia on neonatal health after accounting for mediation by preterm birth, Epidemiology, 2015, vol. 26, no. 1, pp. 17—26. https://doi.org/10.1097/EDE.0000000000000213

    Article  Google Scholar 

  7. Khader, Y.S., Batieha, A., Al-Njadat, R.A., and Hijazi, S.S., Preeclampsia in Jordan: incidence, risk factors, and its associated maternal and neonatal outcomes, J. Matern. Fetal Neonatal Med., 2018, vol. 31, no. 6, pp. 770—776. https://doi.org/10.1080/14767058.2017.1297411

    Article  Google Scholar 

  8. Nahum Sacks, K., Friger, M., Shoham-Vardi, I., et al., Prenatal exposure to preeclampsia as an independent risk factor for long-term cardiovascular morbidity of the offspring, Pregnancy Hypertens., 2018, vol. 13, pp. 181—186. https://doi.org/10.1016/j.preghy.2018.06.013

    Article  Google Scholar 

  9. Nahum Sacks, K., Friger, M., Shoham-Vardi, I., et al., Long-term neuropsychiatric morbidity in children exposed prenatally to preeclampsia, Early Hum. Dev., 2019, vol. 130, pp. 96—100. https://doi.org/10.1016/j.earlhumdev.2019.01.016

    Article  Google Scholar 

  10. Reshetnikov, E.A., Akulova, L.Y., Dobrodomova, I.S., et al., The insertion-deletion polymorphism of the ACE gene is associated with increased blood pressure in women at the end of pregnancy, J. Renin Angiotensin Aldosterone Syst., 2015, vol. 16, no. 3, pp. 623—632. https://doi.org/10.1177/1470320313501217

    Article  Google Scholar 

  11. Severinova, O.V., Lokteva, T.I., Gureev, V.V., et al., The effect of arginase II selective inhibitors on the functional parameters of experimental animals in ADMA-like preeclampsia, J. Int. Pharm. Res., 2019, vol. 46, no. 4, pp. 272—275.

    Google Scholar 

  12. Vennou, K.E., Kontou, P.I., Braliou, G.G., and Bagos, P.G., Meta-analysis of gene expression profiles in preeclampsia, Pregnancy Hypertens., 2020, vol. 19, pp.52—60. https://doi.org/10.1016/j.preghy.2019.12.007

    Article  Google Scholar 

  13. Reshetnikov, E.A., The rs34845949 polymorphism of the SASH1 gene is associated with the risk of preeclampsia, Nauchn. Rezul’t. Biomed. Issled., 2021, vol. 7, no. 1, pp. 44—55. https://doi.org/10.18413/2658-6533-2020-7-1-0-4

    Article  Google Scholar 

  14. Golovchenko, O., Abramova, M., Ponomarenko, I., et al., Functionally significant polymorphisms of ESR1and PGR and risk of intrauterine growth restriction in population of Central Russia, Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, vol. 253, pp. 52—57. https://doi.org/10.1016/j.ejogrb.2020.07.045

    Article  Google Scholar 

  15. Galaviz-Hernandez, C., Sosa-Macias, M., Teran, E., et al., Paternal determinants in preeclampsia, Front. Physiol., 2019, vol. 9, p. 1870. https://doi.org/10.3389/fphys.2018.01870

    Article  Google Scholar 

  16. Serebrova, V.N., Trifonova, E.A., and Stepanov, V.A., Evolutionary genetic analysis of the role of the CORO2A gene regulatory regions in the development of hereditary predisposition to preeclampsia in Russians and Yakuts, Nauchn. Rezul’t. Biomed. Issled., 2018, vol. 4, no. 3, pp. 38—48. https://doi.org/10.18413/2313-8955-2018-4-3-0-4

    Article  Google Scholar 

  17. Reshetnikov, E., Ponomarenko, I., Golovchenko, O., et al., The VNTR polymorphism of the endothelial nitric oxide synthase gene and blood pressure in women at the end of pregnancy, Taiwan. J. Obstet. Gynecol., 2019, vol. 58, no. 3, pp. 390—395. https://doi.org/10.1016/j.tjog.2018.11.035

    Article  Google Scholar 

  18. Chen, G., Li, L., Wu, J., et al., Correlations of P-selectin and E-selectin gene polymorphisms with preeclampsia, Panminerva Med., 2021, vol. 63, no. 1, pp. 93—94. https://doi.org/10.23736/S0031-0808.19.03672-3

    Article  Google Scholar 

  19. Hypertensive Disorders during Pregnancy, Childbirth and the Postpartum Period: Preeclampsia. Eclampsia. Clinical Guidelines (Clinical Protocol), Moscow, 2016, рр. 4–6.

  20. International Consortium for Blood Pressure Genome-Wide Association Studies, Ehret, G.B., Munroe, P.B., Rice, K.M., et al., Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk, Nature, 2011, vol. 478, no. 7367, pp. 103—109. https://doi.org/10.1038/nature10405

    Article  Google Scholar 

  21. Pichler, I., Minelli, C., Sanna, S., et al., Identification of a common variant in the TFR2 gene implicated in the physiological regulation of serum iron levels, Hum. Mol. Genet., 2011, vol. 20, no. 6, pp. 1232—1240. https://doi.org/10.1093/hmg/ddq552

    Article  Google Scholar 

  22. Astle, W.J., Elding, H., Jiang, T., et al., The allelic landscape of human blood cell trait variation and links to common complex disease, Cell, 2016, vol. 167, no. 5, pp. 1415—1429. e19. https://doi.org/10.1016/j.cell.2016.10.042

  23. Chambers, J.C., Zhang, W., Lord, G.M., et al., Genetic loci influencing kidney function and chronic kidney disease, Nat. Genet., 2010, vol. 42, no. 5, pp. 373—375. https://doi.org/10.1038/ng.566

    Article  Google Scholar 

  24. Wain, L.V., Verwoert, G.C., O’Reilly, P.F., et al., Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure, Nat. Genet., 2011, vol. 43, no. 10, pp. 1005—1011. https://doi.org/10.1038/ng.922

    Article  Google Scholar 

  25. Ehret, G.B., Ferreira, T., Chasman, D.I., et al., The genetics of blood pressure regulation and its target organs from association studies in 342 415 individuals, Nat. Genet., 2016, vol. 48, no. 10, pp. 1171—1184. https://doi.org/10.1038/ng.3667

    Article  Google Scholar 

  26. Pilling, L.C., Atkins, J.L., Duff, M.O., et al., Red blood cell distribution width: genetic evidence for aging pathways in 116 666 volunteers, PLoS One, 2017, vol. 12, no. 9. e0185083. https://doi.org/10.1371/journal.pone.0185083

    Article  Google Scholar 

  27. Raffield, L.M., Louie, T., Sofer, T, et al., Genome-wide association study of iron traits and relation to diabetes in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL): potential genomic intersection of iron and glucose regulation?, Hum. Mol. Genet., 2017, vol. 26, no. 10, pp. 1966—1978. https://doi.org/10.1093/hmg/ddx082

    Article  Google Scholar 

  28. Kanai, M., Akiyama, M., Takahashi, A., et al., Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases, Nat. Genet., 2018, vol. 50, no. 3, pp. 390—400. https://doi.org/10.1038/s41588-018-0047-6

    Article  Google Scholar 

  29. Sung, Y.J., Winkler, T.W., de Las Fuentes, L., et al., A large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure, Am. J. Hum. Genet., 2018, vol. 102, no. 3, pp. 375—400. https://doi.org/10.1016/j.ajhg.2018.01.015

    Article  Google Scholar 

  30. Oskarsson, G.R., Oddsson, A., Magnusson, M.K., et al., Predicted loss and gain of function mutations in ACO1 are associated with erythropoiesis, Commun. Biol., 2020, vol. 3, no. 1, p. 189. https://doi.org/10.1038/s42003-020-0921-5

    Article  Google Scholar 

  31. Vuckovic, D., Bao, E.L., Akbari, P., et al., The polygenic and monogenic basis of blood traits and diseases, Cell, 2020, vol. 182, no. 5, pp. 1214—1231. e11. https://doi.org/10.1016/j.cell.2020.08.008

  32. Chen, J., Spracklen, C.N., Marenne, G., et al., The trans-ancestral genomic architecture of glycemic traits, Nat. Genet., 2021, vol. 53, no. 6, pp. 840—860. https://doi.org/10.1038/s41588-021-00852-9

    Article  Google Scholar 

  33. Wain, L.V., Vaez, A., Jansen, R., et al., Novel blood pressure locus and gene discovery using genome-wide association study and expression data sets from blood and the kidney, Hypertension, 2017. https://doi.org/10.1161/HYPERTENSIONAHA.117.09438

  34. Kato, N., Loh, M., Takeuchi, F., et al., Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation, Nat. Genet., 2015, vol. 47, no. 11, pp. 1282—1293. https://doi.org/10.1038/ng.3405

    Article  Google Scholar 

  35. Shungin, D., Winkler, T.W., Croteau-Chonka, D.C., et al., New genetic loci link adipose and insulin biology to body fat distribution, Nature, 2015, vol. 518, no. 7538, pp. 187—196. https://doi.org/10.1038/nature14132

    Article  Google Scholar 

  36. Takeuchi, F., Akiyama, M., Matoba, N., et al., Interethnic analyses of blood pressure loci in populations of East Asian and European descent, Nat. Commun., 2018, vol. 9, no. 1, p. 5052. https://doi.org/10.1038/s41467-018-07345-0

    Article  Google Scholar 

  37. Tachmazidou, I., Süveges, D., Min, J.L., et al., Whole-genome sequencing coupled to imputation discovers genetic signals for anthropometric traits, Am. J. Hum. Genet., 2017, vol. 100, no. 6, pp. 865—884. https://doi.org/10.1016/j.ajhg.2017.04.014

    Article  Google Scholar 

  38. Liu, C., Kraja, A.T., Smith, J.A., et al., Meta-analysis identifies common and rare variants influencing blood pressure and overlap** with metabolic trait loci, Nat. Genet., 2016, vol. 48, no. 10, pp. 1162—1170. https://doi.org/10.1038/ng.3660

    Article  Google Scholar 

  39. Surendran, P., Drenos, F., Young, R., et al., Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension, Nat. Genet., 2016, vol. 48, no. 10, pp. 1151—1161. https://doi.org/10.1038/ng.3654

    Article  Google Scholar 

  40. Hoffmann, T.J., Ehret, G.B., Nandakumar, P., et al., Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation, Nat. Genet., 2017, vol. 49, no. 1, pp. 54—64. https://doi.org/10.1038/ng.3715

    Article  Google Scholar 

  41. Giri, A., Hellwege, J.N., Keaton, J.M., et al., Trans-ethnic association study of blood pressure determinants in over 750 000 individuals, Nat. Genet., 2019, vol. 51, no. 1, pp. 51—62. https://doi.org/10.1038/s41588-018-0303-9

    Article  Google Scholar 

  42. German, C.A., Sinsheimer, J.S., Klimentidis, Y.C., et al., Ordered multinomial regression for genetic association analysis of ordinal phenotypes at Biobank scale, Genet. Epidemiol., 2020, vol. 44, no. 3, pp. 248—260. https://doi.org/10.1002/gepi.22276

    Article  Google Scholar 

  43. Wu, Y., Byrne, E.M., Zheng, Z., et al., Genome-wide association study of medication-use and associated disease in the UK Biobank, Nat. Commun., 2019, vol. 10, no. 1, p. 1891. https://doi.org/10.1038/s41467-019-09572-5

    Article  Google Scholar 

  44. Sakaue, S., Kanai, M., Tanigawa, Y., et al., A cross-population atlas of genetic associations for 220 human phenotypes, Nat. Genet., 2021, vol. 53, no. 10, pp. 1415—1424. https://doi.org/10.1038/s41588-021-00931-x

    Article  Google Scholar 

  45. Jeong, H., **, H.S., Kim, S.S., and Shin, D., Identifying interactions between dietary sodium, potassium, sodium-potassium ratios, and FGF5 rs16998073 variants and their associated risk for hypertension in Korean adults, Nutrients, 2020, vol. 12, no. 7, p. 2121. https://doi.org/10.3390/nu12072121

    Article  Google Scholar 

  46. Tikunova, E., Ovtcharova, V., Reshetnikov, E., et al., Genes of tumor necrosis factors and their receptors and the primary open angle glaucoma in the population of Central Russia, Int. J. Ophthalmol., 2017, vol. 10, pp. 1490—1494. https://doi.org/10.18240/ijo.2017.10.02

    Article  Google Scholar 

  47. Reshetnikov, E., Zarudskaya, O., Polonikov, A., et al., Genetic markers for inherited thrombophilia are associated with fetal growth retardation in the population of Central Russia, J. Obstet. Gynaecol. Res., 2017, vol. 43, no. 7, pp. 1139—1144. https://doi.org/10.1111/jog.13329

    Article  Google Scholar 

  48. Starikova, D., Ponomarenko, I., Reshetnikov, E., et al., Novel data about association of the functionally significant polymorphisms of the MMP-9 gene with exfoliation glaucoma in the Caucasian population of Central Russia, Ophthalmic. Res., 2021, vol. 64, no. 3, pp. 458—464. https://doi.org/10.1159/000512507

    Article  Google Scholar 

  49. Ward, L.D. and Kellis, M., HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease, Nucleic Acids Res., 2016, vol. 44, no. D1, pp. D877—D881. https://doi.org/10.1093/nar/gkv1340

    Article  Google Scholar 

  50. Che, R., Jack, J.R., Motsinger-Reif, A.A., and Brown, C.C., An adaptive permutation approach for genome-wide association study: evaluation and recommendations for use, BioData Min., 2014, vol. 7, no. 1, p. 9. https://doi.org/10.1186/1756-0381-7-9

    Article  Google Scholar 

  51. Purcell, S., Neale, B., Todd-Brown, K., et al., PLINK: a tool set for whole-genome association and population-based linkage analyses, Am. J. Hum. Genet., 2007, vol. 81, no. 3, pp. 559—575. https://doi.org/10.1086/519795

    Article  Google Scholar 

  52. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues, Science, 2020, vol. 369, no. 6509, pp. 1318—1330. https://doi.org/10.1126/science.aaz1776

    Article  Google Scholar 

  53. Minyaylo, O., Ponomarenko, I., Reshetnikov, E., et al., Functionally significant polymorphisms of the MMP-9 gene are associated with peptic ulcer disease in the Caucasian population of Central Russia, Sci. Rep., 2021, vol. 11, no. 1, p. 13515. https://doi.org/10.1038/s41598-021-92527-y

    Article  Google Scholar 

  54. Adzhubei, I., Jordan, D.M., and Sunyaev, S.R., Predicting functional effect of human missense mutations using PolyPhen-2, Curr. Protoc. Hum. Genet., 2013, chapter 7, unit 7.20. https://doi.org/10.1002/0471142905.hg0720s76

  55. Moskalenko, M.I., Milanova, S.N., Ponomarenko, I.V., et al., Study of associations of polymorphism of matrix metalloproteinases genes with the development of arterial hypertension in men, Kardiologiia, 2019, vol. 59, no. 7S, pp. 31—39. https://doi.org/10.18087/cardio.2598

    Article  Google Scholar 

  56. Polonikov, A., Rymarova, L., Klyosova, E., et al., Matrix metalloproteinases as target genes for gene regulatory networks driving molecular and cellular pathways related to a multistep pathogenesis of cerebrovascular disease, J. Cell. Biochem., 2019, vol. 120, no. 10, pp. 16467—16482. https://doi.org/10.1002/jcb.28815

    Article  Google Scholar 

  57. Moskalenko, M., Ponomarenko, I., Reshetnikov, E., et al., Polymorphisms of the matrix metalloproteinase genes are associated with essential hypertension in a Caucasian population of Central Russia, Sci. Rep., 2021, vol. 11, no. 1, p. 5224. https://doi.org/10.1038/s41598-021-84645-4

    Article  Google Scholar 

  58. Stelzer, G., Rosen, N., Plaschkes, I., et al., The GeneCards suite: from gene data mining to disease genome sequence analyses, Curr. Protoc. Bioinf., 2016, vol. 54, pp. 1.30.1—1.30.33. https://doi.org/10.1002/cpbi.5

  59. McNiven, M.A. and Razidlo, G.L., Regulation of cell migration, Encyclopedia of Cell Biology, 2016, vol. 3, pp. 208—215.https://doi.org/10.1016/B978-0-12-394447-4.30030-X

  60. Budko, A.A., Khesina, P.A., Diakov, L.M., and Lazarevich, N.L., Small GTPase Rab3B: biological properties and possible role in carcinogenesis, Adv. Mol. Oncol., 2018, vol. 5, no. 4, pp. 78—85. https://doi.org/10.17650/2313-805X-2018-5-4-78-85

    Article  Google Scholar 

  61. Loirand, G., Scalbert, E., Bril, A., Pacaud, P., Rho exchange factors in the cardiovascular system, Curr. Opin. Pharmacol., 2008, vol. 8, no. 2, pp. 174—180. https://doi.org/10.1016/j.coph.2007.12.006

    Article  Google Scholar 

  62. Li, M., Jiao, Q., **n, W., et al., The emerging role of Rho guanine nucleotide exchange factors in cardiovascular disorders: insights into atherosclerosis: a mini review, Front. Cardiovasc. Med., 2022, vol. 8, p. 782098. https://doi.org/10.3389/fcvm.2021.782098

    Article  Google Scholar 

  63. Hurd, C.A., Brear, P., Revell, J., et al., Affinity maturation of the RLIP76 Ral binding domain to inform the design of stapled peptides targeting the Ral GTPases, J. Biol. Chem., 2021, vol. 296, p. 100101. https://doi.org/10.1074/jbc.RA120.015735

    Article  Google Scholar 

  64. Karpushev, A.V., Mikhailova, V.B., and Abramochkin, D.V., The role of small G-proteins in the regulation of ion channels, Usp. Fiziol. Nauk, 2020, vol. 51, no. 1, pp. 3—17. https://doi.org/10.31857/S0301179820010063

    Article  Google Scholar 

  65. Ehrhardt, G., Korherr, C., Wieler, J., et al., A novel potential effector of M-Ras and p21 Ras negatively regulates p21 Ras-mediated gene induction and cell growth, Oncogene, 2001, vol. 20, no. 2, pp. 188—197. https://doi.org/10.1038/sj.onc.1204053

    Article  Google Scholar 

  66. Kasza, A., Signal-dependent Elk-1 target genes involved in transcript processing and cell migration, Biochim. Biophys. Acta, 2013, vol. 1829, no. 10, pp. 1026—1033. https://doi.org/10.1016/j.bbagrm.2013.05.004

    Article  Google Scholar 

Download references

Funding

The present study was supported by the Grant of the President of the Russian Federation “The Study of Genetic Factors of Women’s Reproductive Health” (MD-3284.2022.1.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Abramova.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by A. Kazantseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramova, M.Y., Ponomarenko, I.V. & Churnosov, M.I. The Polymorphic Locus rs167479 of the RGL3 Gene Is Associated with the Risk of Severe Preeclampsia. Russ J Genet 58, 1543–1550 (2022). https://doi.org/10.1134/S102279542212002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279542212002X

Keywords:

Navigation