Log in

A Barcoding and Morphological Identification of Mosquito Species of the Genus Aedes (Diptera: Culicidae) of the Russian Far East and Northern Vietnam

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

We characterized the variability of mosquitoes of the genus Aedes, subgenus Stegomyia, in the south of European Russia and in the Far East of Russia: in Primorsky krai, Khabarovsk krai, Amur oblast, and the Jewish Autonomous Oblast. We aimed to identify new invasive species of mosquitoes of the subgenus Stegomyia and to document expansion of the range of Aedes albopictus. We analyzed samples of mosquitos on the basis of a combination of mosquito identification by morphological features and DNA barcoding. We compared the variability of the Ae. albopictus invasive population of in southern Russia with the variability of Ae. albopictus population of the native range of northern Vietnam. We found further expansion of Ae. albopictus in the south of the European part of Russia, westward to the territory of the southern coast of Crimea, and northward to the city of Tikhoretsk in Krasnodar krai. We found Ae. flavopictus in Primorsky krai and Khabarovsk krai. In Amur oblast, we found Ae. galloisi. The northern and eastern borders of the range of Ae. flavopictus coincide with the isotherms of +20°C in July and –24°C in January. We found synanthropic dense populations of Ae. flavopictus and Ae. galloisi in the Russian Far East for the first time. Analysis of variability of the BOLD fragment of the mitochondrial COI gene revealed nine new mitochondrial haplotypes of Ae. galloisi and ten new haplotypes of Ae. flavopictus. The analysis of the obtained nucleotide sequences reveals the exact clustering of the haplotypes, with 100% bootstrap value, corresponding to the species Ae. flavopictus, Ae. galloisi, Ae. albopictus, and Ae. aegypti. We did not find cases of mitochondrial introgression between Ae. flavopictus and Ae. galloisi in the area of sympatric habitant of these species. Synanthropic populations of Ae. flavopictus, Ae. galloisi, and Ae. albopictus are close to monomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ryabova, T.E., Yunicheva, Yu.V., Markovich, N.Ya., et al., Detection of Aedes (Stegomyia) aegypti L. mosquitoes in the city of Sochi, Med. Parazitol. Parazit. Bolezni, 2005, no. 3, pp. 3—5.

  2. Ganushkina, L.A., Tanygina, E.Yu., Bezzhonova, O.V., and Sergiev, V.P., On the detection of Aedes (Stegomyia) albopictus Skuse mosquitoes in Russia, Med. Parazitol. Parazit. Bolezni, 2012, no. 1, pp. 3—4.

  3. Kovalenko, I.S., Yakunin, S.N., Abibulaev, D.E., et al., Detection of Aedes (Stegomyia) albopictus (Skuse, 1895) in the Crimea, Probl. Osobo Opasnykh Infekts., 2020, no. 2, pp. 135—137. https://doi.org/10.21055/0370-1069-2020-2-135-137

  4. Gutsevich, V.A., Monchadskii, A.S., and Shtakel’berg, A.A., Mosquitoes (family Culicidae), in Fauna SSSR: nasekomye dvukrylye (Fauna of the USSR: Diptera), Leningrad: Nauka, 1970, vol. 3, no. 4.

  5. Poltoratskaya, N.V. and Mirzaeva, A.G., New records of the mosquito species rare for Western Siberia Aedes sibiricus Danilov et Filippova, 1978 (Diptera, Culicidae), Evraziatskii Entomol. Zh., 2013, no. 12(2), pp. 144—146.

  6. Ree, H., Taxonomic review and revised keys of the Korean mosquitoes (Diptera: Culicidae), Korean J. Entomol., 2003, vol. 33, no. 1, pp. 39—52. https://doi.org/10.1111/j.1748-5967.2003.tb00047.x

    Article  Google Scholar 

  7. Tanaka, K., Mizusawa, K., and Saugstad, E.S., A revision of the adult and larval mosquitoes of Japan (including the Ryukyu Archipelago and the Ogasawara Islands) and Korea (Diptera: Culicidae), Contrib. Am. Entomol. Inst., 1979, vol. 16, pp. 1—987.

    Google Scholar 

  8. Kambhampati, S. and Rai, K.S., Variation in mitochondrial DNA of Aedes species (Diptera: Culicidae), Evolution, 1991, vol. 45, pp. 120—129. https://doi.org/10.2307/2409487

    Article  PubMed  Google Scholar 

  9. Gaunt, C.M.T., Mutebi, J.P., and Munstermann, L.E., Biochemical taxonomy and enzyme electrophoretic profiles during development, for three morphologically similar Aedes species (Diptera: Culicidae) of the subgenus Stegomyia, J. Med. Entomol., 2004, vol. 41, no. 1, pp. 23—32. https://doi.org/10.1603/0022-2585-41.1.23

  10. Toma, T., Miyagi, I., Crabtree, M.B., and Miller, B.R., Investigation of the Aedes (Stegomyia) flavopictus complex (Diptera: Culicidae) in Japan by sequence analysis of the internal transcribed spacers of ribosomal DNA, J. Med. Entomol., 2002, vol. 39, pp. 461—468. https://doi.org/10.1603/0022-2585-39.3.461

  11. Maekawa, Y., Ogawa, K., Komagata, O., et al., DNA barcoding for molecular identification of Japanese mosquitoes, Med. Entomol. Zool., 2016, vol. 67, pp. 183—198. https://doi.org/10.7601/mez.67.183

    Article  Google Scholar 

  12. Taira, K., Toma, T., Tamashiro, M., and Miyagi, I., DNA barcoding for identification of mosquitoes (Diptera: Culicidae) from the Ryukyu Archipelago, Med. Entomol. Zool., 2012, vol. 63, pp. 289—306. https://doi.org/10.7601/mez.63.289

    Article  Google Scholar 

  13. Miyagi, I. and Toma, T., Experimental crossing of Aedes albopictus, Aedes flavopictus downsi and Aedes riversi (Diptera: Culicidae) occurring in Okinawajima, Ryukyu Islands, Jpn. J. Sanit. Zool., 1989, vol. 40, pp. 87—95.

    Article  Google Scholar 

  14. Battaglia, V., Gabrieli, P., Brandini, S., et al., The worldwide spread of the tiger mosquito as revealed by mitogenome haplogroup diversity, Front. Genet., 2016, vol. 23. https://doi.org/10.3389/fgene.2016.00208

  15. Ze-Ze, L., Borges, V., Osorio, H.C., et al., Mitogenome diversity of Aedes (Stegomyia) albopictus: detection of multiple introduction events in Portugal, PLoS Neglected Trop. Dis., 2020. https://doi.org/10.1371/journal.pntd.0008657

  16. Minard, G., Tran Van, V., Tran, F.H., et al., Identification of sympatric cryptic species of Aedes albopictus subgroup in Vietnam: new perspectives in phylosymbiosis of insect vector, Parasites Vectors, 2017, vol. 10, no. 1. https://doi.org/10.1186/s13071-017-2202-9

  17. Fedorova, M.V., Shvets, O.G., Medyanik, I.M., and Shaikevich, E.V., Genetic diversity of invasive Aedes (Stegomyia) albopictus (Skuse, 1895) population (Diptera, Culicidae) in Krasnodar region, Russia, Parazitologiya, 2019, vol. 53, no. 6, pp. 518—528. https://doi.org/10.1134/S0031184719060073

  18. Danilov, V.N. and Filippova, V.V., New species of gnat Aedes (Stegomyia) sibiricus sp. n. (Culicidae), Parazitologiya, 1978, vol. 12, no. 2, pp. 170—176.

    CAS  Google Scholar 

  19. Press, M., Pictorial keys for the identification of mosquitoes (Diptera: Culicidae) associated with dengue virus transmission, Zootaxa, 2004, p. 60. https://doi.org/10.5281/zenodo.169153

  20. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 1982.

    Google Scholar 

  21. Folmer, O., Black, M., Hoeh, W., et al., DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates, Mol. Mar. Biol. Biotechnol., 1994, vol. 3, no. 5, pp. 294—299.

    CAS  PubMed  Google Scholar 

  22. Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 33, no. 7, pp. 1870—1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leigh, J.W., Bryant, D., and Nakagawa, S., PopArt: full-feature software for haplotype network construction, Methods Ecol. Evol., 2015, vol. 6, no. 9, pp. 1110—1116. https://doi.org/10.1111/2041-210x.12410

  24. Clement, M., Posada, D., and Crandall, K.A., TCS: a computer program to estimate gene genealogies, Mol. Ecol., 2000, vol. 9, no. 10, pp. 1657—1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x

  25. Andrianov, B.V., Romanov, D.A., Gorelova, T.V., et al., Sequence polymorphism of the mitochondrial DNA control region in native and invasive populations of Harmonia axyridis (Coleoptera, Coccinellidae), Russ. J. Genet., 2019, vol. 55, no. 7, pp. 885—890.https://doi.org/10.1134/S1022795419070032.

  26. Shragai, T., Harrington, L., Alfonso-Parra, C., and Avila, F., Oviposition site attraction of Aedes albopictus to sites with conspecific and heterospecific larvae during an ongoing invasion in Medellín, Colombia, Parasites Vectors, 2019, vol. 12. https://doi.org/10.1186/s13071-019-3710-6

  27. Wilson-Bahun, T.A., Kamgang, B., Lenga, A., and Wondji, C.S., Larval ecology and infestation indices of two major arbovirus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazzaville, the capital city of the Republic of the Congo, Parasites Vectors, 2020, vol. 13. https://doi.org/10.1186/s13071-020-04374-x

  28. Farjana, T., Tuno, N., and Higa, Y., Effects of temperature and diet on development and interspecies competition in Aedes aegypti and Aedes albopictus, Med. Vet. Entomol., 2012, vol. 26, no. 2. https://doi.org/10.1111/j.1365-2915.2011.00971.x

  29. Bega, A.G., Moskaev, A.V., and Gordeev, M.I., Ecology and distribution of the invasive mosquito species Aedes albopictus (Skuse, 1895) in the South of the European part of Russia, Russ. J. Biol. Invasions, 2021, no. 2, pp. 148—156. https://doi.org/10.1134/S2075111721020041

  30. Cook, S., Lien, N.G., McAlister, E., and Harbach, R.E., Bothaella manhi, a new species of tribe Aedini (Diptera: Culicidae) from the Cuc Phuong National Park of Vietnam based on morphology and DNA sequence, Zootaxa, 2010, vol. 266, no. 1, pp. 33—46. https://doi.org/10.11646/zootaxa.2661.1.2

    Article  Google Scholar 

  31. Adilah-Amrannudin, N., Hamsidi, M., Ismail, N.A., et al., Aedes albopictus in urban and forested areas of Malaysia: a study of mitochondrial sequence variation using the CO1 marker, Trop. Biomed., 2018, vol. 3, pp. 639—652.

    Google Scholar 

  32. Srisawat, R., Phanitchat, T., Komalamisra, N., et al., Susceptibility of Aedes flavopictus miyarai and Aedes galloisi mosquito species in Japan to dengue type 2 virus, Asian Pac. J. Trop. Biomed., 2016, vol. 6, no. 5, pp. 446—450. https://doi.org/10.1016/j.apjtb.2016.03.003

    Article  Google Scholar 

Download references

Funding

This study was carried out with the financial support of the Russian Foundation for Basic Research (project no. 19-34-90192).

Author information

Authors and Affiliations

Authors

Contributions

All authors of the article made equal contributions to the research.

Corresponding authors

Correspondence to A. G. Bega or B. V. Andrianov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for animal care and use have been followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bega, A.G., Vu, T., Goryacheva, I.I. et al. A Barcoding and Morphological Identification of Mosquito Species of the Genus Aedes (Diptera: Culicidae) of the Russian Far East and Northern Vietnam. Russ J Genet 58, 314–325 (2022). https://doi.org/10.1134/S1022795422030024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795422030024

Keywords:

Navigation