Log in

Genetic cell reprogramming: A new technology for basic research and applied usage

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Gene function disclosure and the development of modern technologies of genetic manipulations offered the possibility of genetic reprogramming application to alter cell specialization. With the involvement of a gene set that encodes the transcription factors responsible for the pluripotent state, any cell of an adult body could be reprogrammed into the embryonal state and pluripotency could be induced in this cell. Such reprogrammed cells were called induced pluripotent stem cells (iPSCs), and they are capable of again passing through all developmental stages. This provides new possibilities for studies of the basic mechanisms of developmental biology, the formation of specific cell types, and the whole body. In culture, iPSCs could be maintained permanently in a nontransformed state and permit genetic manipulations while maintaining their pluripotent properties. Such a unique combination of their properties makes them an attractive tool for studies of various pathologies and for the delineation of treatment approaches. This review discusses the basic and applied aspects of iPSCs biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waddington, C.H., The Strategy of the Genes, London: Geo Allen and Unwin, 1957.

    Google Scholar 

  2. Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, no. 126, pp. 663–676.

    Google Scholar 

  3. Evans, M.J. and Kaufman, M.H., Establishment in culture of pluripotential cells from mouse embryos, Nature, 1981, no. 292, pp. 154–156.

    Google Scholar 

  4. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., et al., Embryonic stem cell lines derived from human blastocysts, Science, 1998, no. 282, pp. 1145–1147.

    Google Scholar 

  5. Hanna, J., Markoulaki, S., Schorderet, P., et al., Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency, Cell, 2008, no. 133, pp. 250–264.

    Google Scholar 

  6. Kim, J.B., Zaehres, H., Wu, G., et al., Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors, Nature, 2008, no. 454, pp. 646–650.

    Google Scholar 

  7. Lagarkova, M.A., Shutova, M.V., Bogomazova, A.N., et al., Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale, Cell Cycle, 2010, no. 9, pp. 937–946.

    Google Scholar 

  8. Liao, J., Cui, C., Chen, S., et al., Generation of induced pluripotent stem cell lines from adult rat cells, Cell Stem Cell, 2009, vol. 9, no. 4(1), pp. 11–15.

    Article  Google Scholar 

  9. Wu, Z., Chen, J., Ren, J., et al., Generation of pig induced pluripotent stem cells with a drug-inducible system, J. Mol. Cell Biol., 2009, no. 1(1), pp. 46–54.

    Google Scholar 

  10. Nakagawa, M., Koyanagi, M., Tanabe, K., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts, Nat. Biotechnol., 2008, no. 26(1), pp. 101–106.

    Google Scholar 

  11. Banito, A., Rashid, S.T., Acosta, J.C., et al., Senescence impairs successful reprogramming to pluripotent stem cells, Genes Dev., 2009, no. 23(18), pp. 2134–2139.

    Google Scholar 

  12. Shutova, M.V., Bogomazova, A.N., Lagarkova, M.A., and Kiselev, S.L., Generation and characterization of human induced pluripotent stem cells, Acta Nat., 2009, no. 1(2), pp. 91–92.

    Google Scholar 

  13. Shutova, M.V., Chestkov, I.V., Bogomazova, A.N., et al., Generation of iPS cells from human umbilical vein endothelial cells by lentiviral transduction and their differentiation to neuronal lineage, in Human Embryonic and Induced Pluripotent Stem Cells: Lineage-Specific Differentiation Protocols, Springer Protocols Handbooks, 2011, pp. 134–150.

    Google Scholar 

  14. Kim, D., Kim, C.H., Moon, J.I., et al., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins, Cell Stem Cell, 2009, vol. 5, no. 4(6), pp. 472–476.

    Article  Google Scholar 

  15. Zhou, H., Wu, S., Joo, J.Y., et al., Generation of induced pluripotent stem cells using recombinant proteins, Cell Stem Cell, 2009, vol. 8, no. 4(5), pp. 381–384.

    Article  Google Scholar 

  16. Fusaki, N., Ban, H., Nishiyama, A., et al., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome, Proc. Jpn. Acad., Ser. B, 2009, vol. 85, no. 8, pp. 348–362.

    Article  CAS  Google Scholar 

  17. Takeda, A., Igarashi, H., Kawada, M., et al., Evaluation of the immunogenicity of replication-competent V-knocked-out and replication-defective F-deleted Sendai virus vector-based vaccines in macaques, Vaccine, 2008, vol. 9, no. 26(52), pp. 6839–6843.

    Article  Google Scholar 

  18. Yonemitsu, Y., Kitson, C., Ferrari, S., et al., Efficient gene transfer to airway epithelium using recombinant Sendai virus, Nat. Biotechnol., 2000, no. 18(9), pp. 970–973.

    Google Scholar 

  19. Angel, M., and Yanik, M.F., Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins, PLoS One, 2010, vol. 23, no. 5(7). e11756

    Article  Google Scholar 

  20. Warren, L., Manos, P.D., Ahfeldt, T., et al., Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA, Cell Stem Cell, 2010, vol. 5, no. 7(5), pp. 618–630.

    Article  Google Scholar 

  21. Douvaras, P., Wang, J., Zimmer, M., et al., Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells, Stem Cell Rep., 2014, vol. 12, no. 3(2), pp. 250–259.

    Article  Google Scholar 

  22. Yoshioka, N., Gros, E., Li, H.R., et al., Efficient generation of human iPSCs by a synthetic self-replicative RNA, Cell Stem Cell, 2013, vol. 1, no. 13(2), pp. 246–254.

    Article  Google Scholar 

  23. Zhou, Q., Brown, J., Kanarek, A., et al., In vivo reprogramming of adult pancreatic exocrine cells to betacells, Nature, 2008, vol. 2, no. 455(7213), pp. 627–632.

    Article  Google Scholar 

  24. Su, Z., Niu, W., Liu, M.L., et al., In vivo conversion of astrocytes to neurons in the injured adult spinal cord, Nat. Commun., 2014, vol. 25, no. 5, p. 3338.

    Google Scholar 

  25. Lund, R.J., Närvä, E., and Lahesmaa, R., Genetic and epigenetic stability of human pluripotent stem cells, Nat. Rev. Genet., 2012, no. 13, pp. 732–744.

    Google Scholar 

  26. Karamysheva, T.V., Prokhorovich, M.A., Lagarkova, M.A., et al., Chromosome rearrangements in sublines of human embryonic stem cell lines hESM01 and hESM03, BioDiscovery, 2013, no. 7, p. 1

    Google Scholar 

  27. International Stem Cell Initiative, Amps, K., Andrews, P.W., et al., Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage, Nat. Biotechnol., 2011, no. 29, pp. 1132–1144.

    Google Scholar 

  28. Hussein, S.M.I., Elbaz, J., and Nagy, A., Genome damage in induced pluripotent stem cells: assessing the mechanisms and their consequences, BioEssays, 2012, no. 35(3), pp. 152–162.

    Google Scholar 

  29. Ramos-Mejia, V., Muñoz-Lopez, M., Garcia-Perez, J.L., and Menendez, P., iPSC lines that do not silence the expression of the ectopic reprogramming factors may display enhanced propensity to genomic instability, Cell Res., 2010, no. 20, pp. 1092–1095.

    Google Scholar 

  30. Hussein, S.M., Batada, N.N., Vuoristo, S., et al., Copy number variation and selection during reprogramming to pluripotency, Nature, 2011, no. 471(7336), pp. 58–62.

    Google Scholar 

  31. Bershteyn, M., Hayashi, Y., Desachy, G., et al., Cell-autonomous correction of ring chromosomes in human induced pluripotent stem cells, Nature, 2014, no. 507(7490), pp. 99–103.

    Google Scholar 

  32. Lister, R., Pelizzola, M., Kida, Y.S., et al., Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells, Nature, 2011, vol. 3, no. 471(7336), pp. 68–73.

    Article  Google Scholar 

  33. Bock, C., Kiskinis, E., Verstappen, G., et al., Reference maps of human ES and iPS cell variation enable highthroughput characterization of pluripotent cell lines, Cell, 2011, vol. 4, no. 144(3), pp. 439–452.

    Article  Google Scholar 

  34. Nazor, K.L., Altun, G., Lynch, C., et al., Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives, Cell Stem Cell, 2012, vol. 4, no. 10(5), pp. 620–634.

    Article  Google Scholar 

  35. Maherali, N., Sridharan, R., **e, W., et al., Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution, Cell Stem Cell, 2007, vol. 1, pp. 55–70.

    Article  CAS  PubMed  Google Scholar 

  36. Tchieu, J., Kuoy, E., Chin, M.H., et al., Female human iPSCs retain an inactive X chromosome, Cell Stem Cell, 2010, vol. 7, no. (3), pp. 329–342.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lagarkova, M.A., Shutova, M.V., Bogomazova, A.N., et al., Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale, Cell Cycle, 2010, vol. 1, no. 9(5), pp. 937–946.

    Article  Google Scholar 

  38. Bruck, T. and Benvenisty, N., Meta-analysis of the heterogeneity of X chromosome inactivation in human pluripotent stem cells, Stem Cell Res., 2011, vol. 6, no. 2, pp. 187–193.

    Article  CAS  PubMed  Google Scholar 

  39. Heard, E. and Disteche, C.M., Dosage compensation in mammals: fine-tuning the expression of the X chromosome, Genes Dev., 2006, vol. 20, no. 14, pp. 1848–1867.

    Article  CAS  PubMed  Google Scholar 

  40. Panova, A.V., Nekrasov, E.D., Lagar’kova, M.A., et al., Late replication of the inactive X chromosome is independent of the compactness of chromosome territory in human pluripotent stem cells, Acta Nat., 2013, vol. 5, no. 2(17), pp. 55–63.

    Google Scholar 

  41. Bogomazova, A.N., Lagarkova, M.A., Panova, A.V., et al., Reactivation of X chromosome upon reprogramming leads to changes in the replication pattern and 5hmC accumulation, Chromosoma, 2014, vol. 123, nos. 1–2, pp. 117–128.

    Article  CAS  PubMed  Google Scholar 

  42. Kim, K., Zhao, R., Doi, A., et al., Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells, Nat. Biotechnol., 2011, no. 29, pp. 1117–1119.

    Google Scholar 

  43. Choi, K.D., Vodyanik, M.A., and Slukvin, I.I., Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cellderived lin-CD34+CD43+CD45+ progenitors, J. Clin. Invest., 2009, no. 119, pp. 2818–2829.

    Google Scholar 

  44. Feng, Q., Lu, S.J., Klimanskaya, I., et al., Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence, Stem Cells, 2010, no. 28(4), pp. 704–712.

    Google Scholar 

  45. Ramos-Mejia, V., Melen, G.J., Sanchez, L., et al., Nodal/Activin signaling predicts human pluripotent stem cell lines prone to differentiate toward the hematopoietic lineage, Mol. Ther., 2010, no. 18, pp. 2173–2181.

    Google Scholar 

  46. Qiu, C., Olivier, E.N., Velho, M., and Bouhassira, E.E., Globin switches in yolk sac-like primitive and fetal-like definitive red blood cells produced from human embryonic stem cells, Blood, 2008, no. 111, pp. 2400–2408.

    Google Scholar 

  47. Chang, C.J., Mitra, K., Koya, M., et al., Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells, PLoS One, 2011, no. 6. e25761

    Google Scholar 

  48. Lagarkova, M.A., Eremeev, A.V., Svetlakov, A.V., et al., Human embryonic stem cell lines isolation, cultivation, and characterization, In Vitro Cell Dev. Biol. Anim., 2010, no. 46(3–4), pp. 284–293.

    Google Scholar 

  49. Klimanskaya, I., Hipp, J., Rezai, K.A., et al., Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics, Cloning Stem Cells, 2004, no. 6(3), pp. 217–245.

    Google Scholar 

  50. Lamba, D.A., Gust, J., and Reh, T.A., Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice, Cell Stem Cell, 2009, no. 4(1), pp. 73–79.

    Google Scholar 

  51. Maeda, T., Lee, M.J., Palczewska, G., et al., Retinal pigmented epithelial cells obtained from human induced pluripotent stem cells possess functional visual cycle enzymes in vitro and in vivo, J. Biol. Chem., 2013, no. 288(48), pp. 34484–34493.

    Google Scholar 

  52. Meyer, J.S., Howden, S.E., Wallace, K.A., et al., Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment, Stem Cells, 2011, no. 29(8), pp. 1206–12018.

    Google Scholar 

  53. Lagar’kova, M.A., Shilov, A.G., Gubanova, N.I., et al., Histogenesis of human embryonic stem cells in vitro into the retinal components, Kletochnye Tekhnol. Biol. Med., 2011, no. 4, pp. 203–205.

    Google Scholar 

  54. Phillips, M.J., Perez, E.T., Martin, J.M., et al., Modeling human retinal development with patient-specific induced pluripotent stem cells reveals multiple roles for visual system homeobox 2, Stem Cells, 2014, no. 32(6), pp. 1480–1492.

    Google Scholar 

  55. Yoshida, T., Ozawa, Y., Suzuki, K., et al., The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa, Mol. Brain, 2014, vol. 16, no. 7, p. 45.

    Article  Google Scholar 

  56. Schwartz, S.D., Hubschman, J.P., Heilwell, G., et al., Embryonic stem cell trials for macular degeneration: a preliminary report, Lancet, 2012, vol. 25, no. 379(9817), pp. 713–720.

    Article  Google Scholar 

  57. Kamao, H., Mandai, M., Okamoto, S., et al., Characterization of human induced pluripotent stem cellderived retinal pigment epithelium cell sheets aiming for clinical application, Stem Cell Rep., 2014, no. 2(2), pp. 205–218.

    Google Scholar 

  58. Park, I.-H., Arora, N., Huo, H., et al., Disease-specific induced pluripotent stem cells, Cell, 2008, no. 134, pp. 877–886.

    Google Scholar 

  59. Brennand, K.J., Simone, A., Jou, J., et al., Modelling schizophrenia using human induced pluripotent stem cells, Nature, 2011, no. 473, pp. 221–225.

    Google Scholar 

  60. Israel, M.A., Yuan, S.H., Bardy, C., et al., Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells, Nature, 2012, no. 482, pp. 216–220.

    Google Scholar 

  61. Kondo, T., Asai, M., Tsukita, K., et al., Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness, Cell Stem Cell, 2013, no. 12, pp. 487–496.

    Google Scholar 

  62. Nguyen, H.N., Byers, B., Cord, B., et al., LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress, Cell Stem Cell, 2011, no. 8, pp. 267–280.

    Google Scholar 

  63. Liu, G.-H., Qu, J., Suzuki, K., et al., Progressive degeneration of human neural stem cells caused by pathogenic LRRK2, Nature, 2012, no. 491, pp. 603–607.

    Google Scholar 

  64. Chung, C.Y., Khurana, V., Auluck, P.K., et al., Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons, Science, 2013, no. 342, pp. 983–987.

    Google Scholar 

  65. The HD iPSC Consortium, Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes, Cell Stem Cell, 2012, no. 11, pp. 264–278.

    Google Scholar 

  66. Nekrasov, E.D., Lebedeva, O.S., Chestkov, I.V., et al., Generation and characterization of induced pluripotent stem cells from human skin fibroblasts of patients with neurodegenerative diseases, Kletochnaya Transplantol. Tkanevaya Inzheneriya, 2011, no. 6, pp. 82–88.

    Google Scholar 

  67. Nekrasov, E.D., Lebedeva, O.S., Vasina, E.M., et al., A platform for studies of Huntington’s disease on the basis of induced pluripotent stem cells, Ann. Klin. Eksp. Nevrol., 2012, no. 6, pp. 30–35.

    Google Scholar 

  68. Chestkov, I.V., Vasilieva, E.A., Illarioshkin, S.N., et al., Patient-specific induced pluripotent stem cells for SOD1-associated amyotrophic lateral sclerosis pathogenesis studies, Acta Nat., 2014, no. 6, pp. 54–60.

    Google Scholar 

  69. Lebedeva, O.S., Lagar’kova, M.A., Kiselev, S.L., et al., The morphofunctional properties of induced pluripotent stem cells derived from human skin fibroblasts and differentiated to dopaminergic neurons, Neurochem. J., 2013, vol. 7, no. 3, pp. 207–214.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Kiselev.

Additional information

Original Russian Text © A.N. Bogomazova, E.M. Vassina, S.L. Kiselev, M.A. Lagarkova, O.S. Lebedeva, E.D. Nekrasov, A.V. Panova, E.S. Philonenko, E.A. Khomyakova, L.V. Tskhovrebova, I.V. Chestkov, M.V. Shutova, 2015, published in Genetika, 2015, Vol. 51, No. 4, pp. 466–478.

All of the authors equally contributed to the writing of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogomazova, A.N., Vassina, E.M., Kiselev, S.L. et al. Genetic cell reprogramming: A new technology for basic research and applied usage. Russ J Genet 51, 386–396 (2015). https://doi.org/10.1134/S102279541504002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102279541504002X

Keywords

Navigation