Log in

Assessing the Ability of Picea abies (L.) H. Karst. Plus Tree Clones From the Middle Taiga Subzone of Karelia to Somatic Embryogenesis

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The results of a study of somatic embryogenesis in Norway spruce (Picea abies (L.) H. Karst.), growing in the middle taiga subzone in the Republic of Karelia (Russia), are presented. Immature zygotic embryos were collected from ten clones of plus trees at the Petrozavodsk Seed Orchard and a tree in Petrozavodsk at a sum of effective temperatures from 728 to 1257 degree days (at a base temperature of 5°C). It has been found that it is necessary to use the LM nutrient medium as a substrate for the induction of somatic embryogenesis and proliferation of cell lines and embryos at the development stages from globular to cotyledonary as explants. After 14 months of cultivation, 12 of 26 (56%) cell lines obtained from explants from the Petrozavodsk Seed Orchard and two cell lines of 23 (9%) from a tree in Petrozavodsk were preserved. As a result of the study, maternal genotypes of clones of plus trees of Norway spruce, capable of forming an embryonic suspensor mass, long-term proliferation, and the formation of regenerated plants were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Pintilii, R.-D., Andronache, I., Diaconu, D.C., Dobrea, R.C., Zeleňáková, M., Fensholt, R., Peptenatu, D., Drăghici, C.-C., and Ciobotaru, A.-M., Using fractal analysis in modeling the dynamics of forest areas and economic impact assessment: Maramures, county, Romania, as a case study, Forests, 2017, vol. 8, p. 25. https://doi.org/10.3390/f8010025

    Article  Google Scholar 

  2. Keenan, R.J., Reams, G.A., Achard, F., de Freitas, J.V., Grainger, A., and Lindquist, E., Dynamics of global forest area: Results from the fao global forest resources assessment, For. Ecol. Manag., 2015, vol. 352, p. 9. https://doi.org/10.1016/j.foreco.2015.06.014

    Article  Google Scholar 

  3. Singha, K., Sahariah, D., and Saikia, A., Shrinking forest and contested frontiers: A case of changing human-forest interface along the protected areas of Nagaon District, Assam, India, Eur. J. Geogr., 2019, vol. 10, p. 120.

    Google Scholar 

  4. Hazubska-Przybył, T., Wawrzyniak, M.K., Kijowska-Oberc, J., Staszak, A.M., and Ratajczak, E., Somatic embryogenesis of Norway spruce and Scots pine: Possibility of application in modern forestry, Forests, 2022, vol. 13, p. 155. https://doi.org/10.3390/f13020155

    Article  Google Scholar 

  5. Välimäki, S., Teyssier, C., Tikkinen, M., Delile, A., Boizot, N., Varis, S., Lelu-Walter, M-A., and Aronen, T., Norway spruce somatic embryogenesis benefits from proliferation of embryogenic tissues on filter discs and cold storage of cotyledonary embryos, Front. Plant Sci., 2022, vol. 13, p. 1031686. https://doi.org/10.3389/fpls.2022.1031686

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chalupa, V., Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst., Commun. Inst. For. Cech., 1985, vol. 14, p. 57.

    Google Scholar 

  7. Hakman, I., Fowke, L.C., von Arnold, S., and Eriksson, T., The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce), Plant Sci., 1985, vol. 38, p. 53. https://doi.org/10.1016/0168-9452(85)90079-2

    Article  Google Scholar 

  8. Nagmani, R. and Bonga, J.M., Embryogenesis in subcultured callus of Larix decidua, Can. J. For. Res., 1985, vol. 15, p. 1088. https://doi.org/10.1139/x85-177

    Article  Google Scholar 

  9. Varis, S., Norway spruce Picea abies (L.) Karst, in Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants, Jain, S. and Gupta, P., Eds., Amsterdam: Springer, 2018, p. 225

    Google Scholar 

  10. Hazubska-Przybył, T., Ratajczak, E., Obarska, A., and Pers-Kamczyc, E., Different roles of auxins in somatic embryogenesis efficiency in two Picea species, Int. J. Mol. Sci., 2020, vol. 21, p. 3394. https://doi.org/10.3390/ijms21093394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hazubska-Przybyl, T. and Bojarczuk, K., Somatic embryogenesis of selected spruce species (Picea abies, P. omorika, P. pungens 'Glauca' and P. breweriana), Acta Soc. Bot. Pol., 2008, vol. 77, p. 189. https://doi.org/10.5586/asbp.2008.023

    Article  CAS  Google Scholar 

  12. Krogstrup, P., Eriksen, E.N., Moller, J.D., and Roulund, H., Somatic embryogenesis in sitka spruce (Picea sitchensis (Bong.) Carr.), Plant Cell Rep., 1988, vol. 7, p. 594. https://doi.org/10.1007/BF00272766

    Article  CAS  PubMed  Google Scholar 

  13. von Arnold, S. and Woodward, S., Organogenesis and embryogenesis in mature zygotic embryos of Picea sitchensis, Tree Physiol., 1988, vol. 4, p. 291. https://doi.org/10.1093/treephys/4.3.291

    Article  Google Scholar 

  14. Hazubska, T. and Szczygiel, K., Induction of somatic embryogenesis in spruce: Picea omorika, P. pungens “Glauca”, P. breweriana and P. abies, Dendrobiol., 2003. vol. 50, p. 17. https://doi.org/10.5586/asbp.2008.023

    Article  Google Scholar 

  15. Lelu, M-A. and Bornman, C.H., Induction of somatic embryogenesis in excised cotyledons of Picea abies and Picea mariana, Plant Physiol. Biochem., 1990, vol. 28, p. 785.

    CAS  Google Scholar 

  16. Liao, Y.K., Liao, C.K., and Ho, Y.L., Maturation of somatic embryos in two embryogenic cultures of Picea morrisonicola Hayata as affected by alternation of endogenous IAA content, Plant Cell Tissue Organ Cult., 2008, p. 257. https://doi.org/10.1007/s11240-008-9371-3

  17. Li, C.H., Liu, B.G., Kim, T.D., Moon, H.K., and Choi, Y-E., Somatic embryogenesis and plant regeneration in elite genotypes of Picea koraiensis, Plant Biotechnol., 2008, vol. 2, p. 259. https://doi.org/10.1007/s11816-008-0073-4

    Article  Google Scholar 

  18. Shalaev, E.A. and Tretyakova, I.N., Induction of somatic embryogenesis in Ayan spruce in in vitro culture, Khvoinye Borealnoi Zony, 2011, vol. 28, no. 1-2, p. 69.

    Google Scholar 

  19. Tretyakova, I.N., Pak, M.E., Pakhomova, A.P., Sheveleva, I.S., and Muratova, E.N., Induction of somatic embryogenesis in Siberian spruce (Picea obovata) in vitro, Vest. Tomsk Gos. Univ. Biol., 2021, vol. 54, p. 6. https://doi.org/10.17223/19988591/54/1

    Article  Google Scholar 

  20. Gupta, P.K. and Durzan, D.J., Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana), Plant Cell Rep., 1985, vol. 4, p. 177.

    Article  CAS  PubMed  Google Scholar 

  21. Litvay, J.D., Verma, D.C., and Johnson, M.A., Influence of a loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.), Plant Cell Rep., 1985, vol. 4, p. 325.

    Article  CAS  PubMed  Google Scholar 

  22. Tretyakova, I.N. and Voroshilova, E.V., Features of the initiation of embryoids from megagametophytes Pinus sibirica in in vitro culture, Ontogenez, 2014, vol. 45, p. 112. https://doi.org/10.7868/s0475145014020074

    Article  Google Scholar 

  23. Tretyakova, I.N., Voroshilova, E.V., Shuvaev, D.N., and Pak, M.E., Prospects for microclonal propagation of conifers in in vitro culture through somatic embryogenesis, Khvoinye Borealnoi Zony, 2012, vol. 29, p. 180.

    Google Scholar 

  24. Aronen, T., Virta, S., and Varis, S., Telomere length in Norway spruce during somatic embryogenesis and cryopreservation, Plants, 2021, vol. 10, p. 416. https://doi.org/10.3390/plants10020416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. von Arnold, S., Clapham, D., Egertsdotter, U., and Mo, L.H., Somatic embryogenesis in conifers—a case study of induction and development of somatic embryos in Picea abies, Plant Growth Regul., 1996, vol. 20, p. 3.

    Article  CAS  Google Scholar 

  26. Krogstrup, P., Embryolike structures from cotyledons and ripe embryos of Norway spruce (Picea abies), Can. J. For. Res., 1986, vol. 16, p. 664. https://doi.org/10.1139/x86-116

    Article  Google Scholar 

  27. Zheleznichenko, T.V. and Novikova, T.I., Effect of ascorbic acid and glutathione on the induction of somatic embryogenesis of Picea pungens Engelmann, Turczaninowia, 2017, vol. 20, no. 3, p. 27. https://doi.org/10.14258/turczaninowia.20.3.4

    Article  Google Scholar 

  28. Chatelain, M., Drobniak, S.M., and Szulkin, M., The association between stressors and telomeres in non-human vertebrates: A metaanalysis, Ecol. Lett., 2020, vol. 23, p. 381. https://doi.org/10.1111/ele.13426

    Article  PubMed  Google Scholar 

  29. von Arnold, S.V. and Eriksson, T., In vitro studies of adventitious shoot formation in Pinus contorta, Can. J. Bot., 1981, vol. 59, p. 870.

    Article  Google Scholar 

  30. Ershova, M.A., Ignatenko, R.V., Novichonok, E.V., Chirva, O.V., and Galibina, N.A., Optimization of conditions for sterilization and cultivation of Pinus sylvestris (Pinaceae) explants, Rast. res., 2022, vol. 58, p. 431. https://doi.org/10.31857/S0033994622040057

  31. Ignatenko, R.V., Chirva, O.V., Ershova, M.A., and Galibina, N.A., Some problems arising during the initiation of somatic embryogenesis in Pinus sylvestris L., Environ. Sci. Proc., 2022, vol. 22, p. 48. https://doi.org/10.3390/IECF2022-13364

    Article  Google Scholar 

  32. von Aderkas, P., Label, P., and Lelu, M.A., Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch, Tree Physiol., 2002, vol. 22, p. 431. https://doi.org/10.1093/treephys/22.6.431

    Article  CAS  PubMed  Google Scholar 

  33. Szczygiel, K., Hazubska-Przybyl, T., and Bojarczuk, K., Somatic embryogenesis of selected coniferous tree species of the genera Picea, Abies and Larix, Acta Soc. Bot. Pol., 2007, vol. 76, p. 7. https://doi.org/10.5586/asbp.2007.001

    Article  Google Scholar 

  34. Tretyakova, I.N. and Barsukova, A.V., Somatic embryogenesis in in vitro culture of three larch species, Ontogenez, 2012, vol. 43, no. 6, p. 425.

    Google Scholar 

  35. Stasolla, C., Kong, L., Yeung, E.C., and Thorpe, T.A., Maturation of somatic embryos in conifers: Morphogenesis, physiology, biochemistry, and molecular biology, In Vitro Cell. Dev. Biol. Plant, 2002, vol. 38, p. 93. https://doi.org/10.1079/IVP2001262

    Article  CAS  Google Scholar 

  36. Stasolla, C., van Zyl, L., Egertsdotter, U., Craig, D., Liu, W., and Sederoff, R.R., The effects of polyethylene glycol on gene expression of develo** white spruce somatic embryos, Plant Physiol., 2003, vol. 131, p. 49. https://doi.org/10.1104/pp.015214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Häggman, H., Jokela, A., Krajnakova, J., Kauppi, A., Niemi, K., and Aronen, T., Somatic embryogenesis of Scots pine: Cold treatment and characteristics of explants affecting induction, J. Exp. Bot., 1999, vol. 50, p. 1769. https://doi.org/10.1093/jxb/50.341.1769

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Forest Institute, (Karelian Research Center, Russian Academy of Sciences) for their assistance in collecting field material and personally to the senior chemist of the analytical laboratory S.I. Tikhomirova for assistance in cultivating Norway spruce cell lines.

Funding

The work was supported by the federal budget under the state order of the Karelian Research Center (Forest Institute, Karelian Research Center, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Ignatenko.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by M. Shulskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: Petrozavodsk SO—Petrozavodsk Seed Orchard; SE—somatic embryogenesis; ESM—embryonic suspensor mass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ignatenko, R.V., Chirva, O.V., Ershova, M.A. et al. Assessing the Ability of Picea abies (L.) H. Karst. Plus Tree Clones From the Middle Taiga Subzone of Karelia to Somatic Embryogenesis. Russ J Plant Physiol 71, 25 (2024). https://doi.org/10.1134/S1021443724604531

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443724604531

Keywords:

Navigation