Log in

Effect of Elevated Temperature on Premature Senescence in Nodules of Pea (Pisum sativum L.) sym26 and sym27 Mutants. II. Ultrastructural Organization

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Delaying nodule senescence and prolonging the time of nitrogen fixation are promising objectives for increasing legume yields. However, the mechanisms of nodule senescence still require further investigation. In this study, the ultrastructural organization of symbiotic nodules subjected to the combined effect of two factors that activate premature senescence of symbiotic nodules: ineffective interaction and elevated temperature (28°C) was investigated. It was demonstrated that symbiotically ineffective pea (Pisum sativum L.) mutant lines SGEFix-3 (sym26) and SGEFix-7 (sym27) exhibiting a premature senescence phenotype respond differently to a stress factor such as elevated temperature. Indeed, the mutant line SGEFix-3 (sym26) exhibited pronounced oxidative stress reactions, while the mutant line SGEFix-7 (sym27) developed reactions affecting cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Brewin, N.J., Plant cell wall remodelling in the Rhizobium–legume symbiosis, Crit. Rev. Plant Sci., 2004, vol. 23, p. 293. https://doi.org/10.1080/07352680490480734

    Article  CAS  Google Scholar 

  2. Coba de la Peña, T., Fedorova, E., Pueyo, J.J., and Lucas, M.M., The symbiosome: legume and rhizobia co-evolution toward a nitrogen-fixing organelle?, Front. Plant Sci., 2018, vol. 8, p. 2229. doi https://doi.org/10.3389/fpls.2017.02229

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tsyganova, A.V., Kitaeva, A.B., and Tsyganov, V.E., Cell differentiation in nitrogen-fixing nodules hosting symbiosomes, Funct. Plant Biol., 2018, vol. 45, p. 47. https://doi.org/10.1071/Fp16377

    Article  CAS  PubMed  Google Scholar 

  4. Serova, T.A. and Tsyganov, V.E., Symbiotic nodule senescence in legumes: molecular-genetic and cellular aspects (review), Agric. Biol., 2014, vol. 5, p. 3. https://doi.org/10.15389/agrobiology.2014.5.3eng

    Article  Google Scholar 

  5. Swaraj, K., Dhandi, S., and Sheokand, S., Relationship between defense mechanism against activated oxygen species and nodule functioning with progress in plant and nodule development in Cajanus cajan L. Millsp, Plant Sci., 1995, vol. 112, p. 65. https://doi.org/10.1016/0168-9452(95)04231-I

    Article  CAS  Google Scholar 

  6. Müller, J., Boller, T., and Wiemken, A., Trehalose becomes the most abundant non-structural carbohydrate during senescence of soybean nodules, J. Exp. Bot., 2001, vol. 52, p. 943. https://doi.org/10.1093/jexbot/52.358.943

    Article  PubMed  Google Scholar 

  7. Brewin, N.J., Development of the legume root nodule, Annu. Rev. Cell Biol., 1991, vol. 7, p. 191. https://doi.org/10.1146/annurev.cb.07.110191.001203

    Article  CAS  PubMed  Google Scholar 

  8. Pérez Guerra, J.C., Coussens, G., De Keyser, A., De Rycke, R., De Bodt, S., Van De Velde, W., Goormachtig, S., and Holsters, M., Comparison of developmental and stress-induced nodule senescence in Medicago truncatula, Plant Physiol., 2010, vol. 152, p. 1574. https://doi.org/10.1104/pp.109.151399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matamoros, M.A., Baird, L.M., Escuredo, P.R., Dalton-, D.A., Minchin, F.R., Iturbe-Ormaetxe, I., Rubio, M.C., Moran, J.F., Gordon, A.J., and Becana, M., Stress-induced legume root nodule senescence. physiological, biochemical, and structural alterations, Plant Physiol., 1999, vol. 121, p. 97. https://doi.org/10.1104/pp.121.1.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruiz-Lozano, J.M., Collados, C., Barea, J.M., and Azcón, R., Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants, New Phytol., 2001, vol. 151, p. 493. https://doi.org/10.1046/j.0028-646x.2001.00196.x

    Article  CAS  Google Scholar 

  11. Cilliers, M., van Wyk, S.G., van Heerden, P.D.R., Kunert, K.J., and Vorster, B.J., Identification and changes of the drought-induced cysteine protease transcriptome in soybean (Glycine max) root nodules, Environ. Exp. Bot., 2018, vol. 148, p. 59. https://doi.org/10.1016/j.envexpbot.2017.12.005

    Article  CAS  Google Scholar 

  12. Borucki, W. and Sujkowska, M., The effects of sodium chloride-salinity upon growth, nodulation, and root nodule structure of pea (Pisum sativum L.) plants, Acta Physiol. Plant., 2008, vol. 30, p. 293. https://doi.org/10.1007/s11738-007-0120-8

    Article  CAS  Google Scholar 

  13. Garg, N. and Manchanda, G., Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (pigeonpea), J. Plant Growth Regul., 2008, vol. 27, p. 115. https://doi.org/10.1007/s00344-007-9038-z

    Article  CAS  Google Scholar 

  14. de Zélicourt, A., Diet, A., Marion, J., Laffont, C., Ariel, F., Moison, M., Zahaf, O., Crespi, M., Gruber, V., and Frugier, F., Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence, Plant J., 2012, vol. 70, p. 220. https://doi.org/10.1111/j.1365-313X.2011.04859.x

    Article  CAS  PubMed  Google Scholar 

  15. Sauviac, L., Rémy, A., Huault, E., Dalmasso, M., Kazmierczak, T., Jardinaud, M.F., Legrand, L., Moreau, C., Ruiz, B., Cazalé, A.C., Valière, S., Gourion, B., Dupont, L., Gruber, V., Boncompagni, E., et al., A dual legume-rhizobium transcriptome of symbiotic nodule senescence reveals coordinated plant and bacterial responses, Plant Cell Environ., 2022, vol. 45, p. 3100. https://doi.org/10.1111/pce.14389

    Article  CAS  PubMed  Google Scholar 

  16. Escuredo, P.R., Minchin, F.R., Gogorcena, Y., Iturbe-Ormaetxe, I., Klucas, R.V., and Becana, M., Involvement of activated oxygen in nitrate-induced senescence of pea root nodules, Plant Physiol., 1996, vol. 110, p. 1187. https://doi.org/10.1104/pp.110.4.1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Serova, T.A., Kusakin, P.G., Kitaeva, A.B., Seliverstova, E.V., Gorshkov, A.P., Romanyuk, D.A., Zhukov, V.A., Tsyganova, A.V., and Tsyganov, V.E., Effects of elevated temperature on Pisum sativum nodule development: I—Detailed characteristic of unusual apical senescence, Int. J. Mol. Sci., 2023, vol. 24, p. 17144. https://doi.org/10.3390/ijms242417144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sagan, M., Huguet, T., Barker, D., and Duc, G., Characterization of two classes of non-fixing mutants of pea plants (Pisum sativum L.), Plant Sci., 1993, vol. 95, p. 55. https://doi.org/10.1016/0168-9452(93)90079-F

    Article  CAS  Google Scholar 

  19. Novák, K., Pešina, K., Nebesářová, J., Škrdleta, V., Lisá, L., and Našinec, V., Symbiotic tissue degradation pattern in the ineffective nodules of three nodulation mutants of pea (Pisum sativum L.), Ann. Bot., 1995, vol. 76, p. 303. https://doi.org/10.1006/anbo.1995.1100

    Article  Google Scholar 

  20. Berrabah, F., Bourcy, M., Eschstruth, A., Cayrel, A., Guefrachi, I., Mergaert, P., Wen, J., Jean, V., Mysore, K.S., Gourion, B., and Ratet, P., A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis, New Phytol., 2014, vol. 203, p. 1305. https://doi.org/10.1111/nph.12881

    Article  CAS  PubMed  Google Scholar 

  21. Berrabah, F., Bernal, G., Elhosseyn, A.-S., El Kassis, C., L’Horset, R., Benaceur, F., Wen, J., Mysore, K.S., Garmier, M., Gourion, B., Ratet, P., and Gruber, V., Insight into the control of nodule immunity and senescence during Medicago truncatula symbiosis, Plant Physiol., 2023, vol. 191, p. 729. https://doi.org/10.1093/plphys/kiac505

    Article  CAS  PubMed  Google Scholar 

  22. Morzhina, E.V., Tsyganov, V.E., Borisov, A.Y., Lebsky, V.K., and Tikhonovich, I.A., Four developmental stages identified by genetic dissection of pea (Pisum sativum L.) root nodule morphogenesis, Plant Sci., 2000, vol. 155, p. 75. https://doi.org/10.1016/s0168-9452(00)00207-7

    Article  CAS  PubMed  Google Scholar 

  23. Serova, T.A., Tsyganova, A.V., and Tsyganov, V.E., Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages, Protoplasma, 2018, vol. 255, p. 1443. https://doi.org/10.1007/s00709-018-1246-9

    Article  CAS  PubMed  Google Scholar 

  24. Banba, M., Siddique, A.-B.M., Kouchi, H., Izui, K., and Hata, S., Lotus japonicus forms early senescent root nodules with Rhizobium etli, Mol. Plant Microbe Interact., 2001, vol. 14, p. 173. https://doi.org/10.1094/MPMI.2001.14.2.173

    Article  CAS  PubMed  Google Scholar 

  25. Muglia, C., Comai, G., Spegazzini, E., Riccillo, P.M., and Aguilar, O.M., Glutathione produced by Rhizobium tropici is important to prevent early senescence in common bean nodules, FEMS Microbiol. Lett., 2008, vol. 286, no. 2, p. 191. https://doi.org/10.1111/j.1574-6968.2008.01285.x

    Article  CAS  PubMed  Google Scholar 

  26. Maunoury, N., Redondo-Nieto, M., Bourcy, M., Van de Velde, W., Alunni, B., Laporte, F., Durand, P., Agier, N., Marisa, L., Vaubert, D., Delacroix, H., Duc, G., Ratet, P., Aggerbeck, L., Kondorosi, E., et al., Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches, PLoS ONE, 2010, vol. 5, p. e9519. https://doi.org/10.1371/journal.pone.0009519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kosterin, O.E. and Rozov, S.M., Map** of the new mutation blb and the problem of integrity of linkage group I, Pisum Genet., 1993, vol. 25, p. 27.

    Google Scholar 

  28. Tsyganov, V.E. and Tsyganova, A.V., Symbiotic regulatory genes controlling nodule development in Pisum sativum L, Plants, 2020, vol. 9, p. 1741.https://doi.org/10.3390/plants9121741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Glenn, A.R., Poole, P.S., and Hudman, J.F., Succinate uptake by free-living and bacteroid forms of Rhizobium leguminosarum, Microbiology, 1980, vol. 119, p. 267. https://doi.org/10.1099/00221287-119-1-267

    Article  CAS  Google Scholar 

  30. Kusakin, P.G., Serova, T.A., Gogoleva, N.E., Gogolev, Y.V., and Tsyganov, V.E., Laser microdissection of Pisum sativum L. nodules followed by RNA-seq analysis revealed crucial transcriptomic changes during infected cell differentiation, Agronomy, 2021, vol. 11, p. 2504. https://doi.org/10.3390/agronomy11122504

    Article  CAS  Google Scholar 

  31. Puppo, A., Groten, K., Bastian, F., Carzaniga, R., Soussi, M., Lucas, M.M., de Felipe, M.R., Harrison, J., Vanacker, H., and Foyer, C.H., Legume nodule senescence: Roles for redox and hormone signalling in the orchestration of the natural aging process, New Phytol., 2005, vol. 165, p. 683. https://doi.org/10.1111/j.1469-8137.2004.01285.x

    Article  CAS  PubMed  Google Scholar 

  32. Dupont, L., Alloing, G., Pierre, O., El Msehli, S., Hopkins, J., Hérouart, D., and Frendo, P., The legume root nodule: from symbiotic nitrogen fixation to senescence, in: Senescence, Nagata, T., Ed., London: IntechOpen, 2012, p 137.

    Google Scholar 

  33. Bruand, C. and Meilhoc, E., Nitric oxide in plants: Pro- or anti-senescence, J. Exp. Bot., 2019, vol. 70, p. 4419. https://doi.org/10.1093/jxb/erz117

    Article  CAS  PubMed  Google Scholar 

  34. Kazmierczak, T., Yang, L., Boncompagni, E., Meilhoc, E., Frugier, F., Frendo, P., Bruand, C., Gruber, V., and Brouquisse, R., Legume nodule senescence: a coordinated death mechanism between bacteria and plant cells, in: Advanced Botanical Research, Frendo, P., Frugier, F., and Masson-Boivin, C., Eds., Academic Press, 2020, p 181.

    Google Scholar 

  35. Loscos, J., Matamoros, M.A., and Becana, M., Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence, Plant Physiol., 2008, vol. 146, p. 1282. https://doi.org/10.1104/pp.107.114066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alesandrini, F., Mathis, R., Van de Sype, G., Hérouart, D., and Puppo, A., Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescence, New Phytol., 2003, vol. 158, p. 131. https://doi.org/10.1046/j.1469-8137.2003.00720.x

    Article  CAS  Google Scholar 

  37. Wang, L., Tian, T., Liang, J., Li, R., **n, X., Qi, Y., Zhou, Y., Fan, Q., Ning, G., Becana, M., and Duanmu, D., A transcription factor of the NAC family regulates nitrate-induced legume nodule senescence, New Phytol., 2023, vol. 238, p. 2113. https://doi.org/10.1111/nph.18896

    Article  CAS  PubMed  Google Scholar 

  38. Sandalio, L.M., Rodríguez-Serrano, M., Romero-Puertas, M.C., and del Río, L.A., Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules, in: Peroxisomes and their Key Role in Cellular Signaling and Metabolism, del Río, L.A., Ed., Dordrecht: Springer Netherlands, 2013, p 231.

    Google Scholar 

  39. Chaouch, S. and Noctor, G., Myo-inositol abolishes salicylic acid-dependent cell death and pathogen defence responses triggered by peroxisomal hydrogen peroxide, New Phytol., 2010, vol. 188, p. 711. https://doi.org/10.1111/j.1469-8137.2010.03453.x

    Article  CAS  PubMed  Google Scholar 

  40. Gorshkov, A.P., Tsyganova, A.V., Vorobiev, M.G., and Tsyganov, V.E., The fungicide tetramethylthiuram disulfide negatively affects plant cell walls, infection thread walls, and symbiosomes in pea (Pisum sativum L.) symbiotic nodules, Plants, 2020, vol. 9, p. 1488. https://doi.org/10.3390/plants9111488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gorshkov, A.P., Kusakin, P.G., Borisov, Y.G., Tsyganova, A.V., and Tsyganov, V.E., Effect of triazole fungicides Titul Duo and Vintage on the development of pea (Pisum sativum L.) symbiotic nodules, Int. J. Mol. Sci., 2023, vol. 24, p. 8646. https://doi.org/10.3390/ijms24108646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kurepa, J. and Smalle, J.A., Extensin and senescence: A cell wall connection, J. Exp. Bot., 2023, vol. 74, p. 5419. https://doi.org/10.1093/jxb/erad336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vasse, J., de Billy, F., Camut, S., and Truchet, G., Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules, J. Bacteriol., 1990, vol. 172, p. 4295. https://doi.org/10.1128/jb.172.8.4295-4306.1990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Van de Velde, W., Guerra, J.C.P., Keyser, A.D., De Rycke, R., Rombauts, S., Maunoury, N., Merg-aert, P., Kondorosi, E., Holsters, M., and Goormachtig, S., Aging in legume symbiosis. A molecular view on nodule senescence in Medicago truncatula, Plant Physiol., 2006, vol. 141, p. 711. https://doi.org/10.1104/pp.106.078691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Newcomb, W., A correlated light and electron microscopic study of symbiotic growth and differentiation in Pisum sativum root nodules, Can. J. Bot., 1976, vol. 54, p. 2163. https://doi.org/10.1139/b76-233

    Article  Google Scholar 

  46. Vance, C.P., Johnson, L.E.B., and Hardarson, G., Histological comparisons of plant and Rhizobium induced ineffective nodules in alfalfa, Physiol. Plant Pathol., 1980, vol. 17, p. 167. https://doi.org/10.1016/0048-4059(80)90049-1

    Article  Google Scholar 

  47. Kijne, J.W., The fine structure of pea root nodules. 2. Senescence and disintegration of the bacteroid tissue, Physiol. Plant Pathol., 1975, vol. 7, p. 17. https://doi.org/10.1016/0048-4059(75)90055-7

    Article  Google Scholar 

  48. van Doorn, W.G. and Papini, A., Ultrastructure of autophagy in plant cells, Autophagy, 2013, vol. 9, p. 1922. https://doi.org/10.4161/auto.26275

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was performed using equipment of the Core Centrum «Genomic Technologies, Proteomics and Cell Biology» in ARRIAM.

Funding

This work was funded by the Russian Science Foundation, grant no. 21-16-00117.

Author information

Authors and Affiliations

Authors

Contributions

V.E.T. conceptualized and administrated of the project, edited the manuscript. T.A.S. designed the experiments. A.P.G. and T.A.S. collected samples and performed the experiments. E.V.S. and A.V.T. performed an electron microscopic examination. A.V.T. drafted the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. V. Tsyganova.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflict of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: ROS, reactive oxygen species.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganova, A.V., Seliverstova, E.V., Gorshkov, A.P. et al. Effect of Elevated Temperature on Premature Senescence in Nodules of Pea (Pisum sativum L.) sym26 and sym27 Mutants. II. Ultrastructural Organization. Russ J Plant Physiol 70, 201 (2023). https://doi.org/10.1134/S1021443723603476

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723603476

Keywords:

Navigation