Log in

Selenium and Nano-Selenium Diminish Salt Stress-Mediated Oxidative Damage in Narcissus tazetta by Up-Regulating Enzymatic and Non-Enzymatic Antioxidants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The underlying mechanism of selenium (Se) and nano-Se facilitating salinity tolerance in Narcissus tazetta is not understood and information on how growth and physiochemical attributes is regulated by Se and nano-Se salinity stress is scarce. In this work, we investigated how the Se and nano-Se ameliorate the damaging impacts of salinity on N. tazetta plant. Plants were treated with Se (25 mg/L) and nano-Se (2 mg/L) and three concentrations of NaCl (0, 100 and 200 mM). Salinity stress reduced growth parameters compared with normal growth condition. Obtained results revealed that applied anti-stressors (Se and nano-Se) improved growth of N. tazetta under salinity conditions. The application of nano-Se more improved N. tazetta growth compared to Se. Nevertheless, the interaction between Se and nano-Se was not effective on the growth improvement of N. tazetta. Salinity boosted hydrogen peroxide (H2O2) and malondialdehyde (MDA) that resulted in oxidative damage. Se, nano-Se and Se × nano-Se treatments declined endogenous level of MDA under salinity. Se, nano-Se and Se × nano-Se treatments decreased the salinity-mediated oxidative damage by inducing activity of enzymatic components (superoxide dismutase, catalase, peroxidase and polyphenol oxidase) of the antioxidant system and the accumulation of total phenol, flavonoid and anthocyanin. Furthermore, Se and Se × nano-Se proved beneficial in increasing proline and soluble sugar in salt-stressed plants. Conclusively, Se and nano-Se acted as ameliorator and can be of beneficial in preventing salinity-mediated damage, and further studies are required to understanding of to how Se and nano-Se regulate physiochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Mujeeb-kazi, A., Munns, R., Rasheed, A., Saeed, N., Wang, R., and Rengasamy, P., Breeding strategies for structuring salinity tolerance in wheat, Adv. Agron., 2019, vol. 155, p. 121. https://doi.org/10.1016/bs.agron.2019.01.005

    Article  Google Scholar 

  2. Rai, G.K., Rai, N.P., Rathaur, S., Kumar, S., and Singh, M., Expression of rd29A: AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants, Plant Physiol. Biochem., 2013, vol. 69, p. 90. https://doi.org/10.1016/j.plaphy.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  3. Puniran-Hartley, N., Hartley, J., Shabala, L., and Shabala, S., Salinity-induced accumulation of organic osmolytes in barley and wheat leaves correlates with increased oxidative stress tolerance: in planta evidence for cross-tolerance, Plant Physiol. Biochem., 2014, vol. 83, p. 32. https://doi.org/10.1016/j.plaphy.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  4. Veatch-Blohm, M.E., Sawch, D., Elia, N., and Pinciotti, D., Salinity tolerance of three commonly planted Narcissus cultivars, HortScience, 2014, vol. 49, p. 1158. https://doi.org/10.21273/HORTSCI.49.9.1158

    Article  CAS  Google Scholar 

  5. Wang, S., Liu, P., Chen, D., Yin, L., Li, H., and Deng, X., Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber, Front. Plant Sci., 2015, vol. 6, p. 759. https://doi.org/10.3389/fpls.2015.00759

    Article  PubMed  PubMed Central  Google Scholar 

  6. Estevez, H., Garcia-Lidon, J.C., Luque-Garcia, J.L., and Camara, C., Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospecies, Colloids Surf., B, 2014, vol. 122, p. 184. https://doi.org/10.1016/j.colsurfb.2014.06.062

    Article  CAS  Google Scholar 

  7. El-Baz, F.K., Mahmoud, K., El-Senousy, W.M., Darwesh, O.M., and ElGohary, A.E., Antiviral–antimicrobial and schistosomicidal activities of Eucalyptus camaldulensis essential oils, Int. J. Pharm. Sci. Rev. Res., 2015, vol. 31, p. 262.

    Google Scholar 

  8. Sardari, M., Rezayian, M., and Niknam, V., Comparative study for the effect of selenium and nano-selenium on wheat plants grown under drought stress, Russ. J. Plant Physiol., 2022, vol. 69, p. 127. https://doi.org/10.1134/S102144372206022X

    Article  CAS  Google Scholar 

  9. Whetherley, P.E., Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves, New Phytol., 1950, vol. 49, p. 81. https://doi.org/10.1111/j.1469-8137.1950.tb05146.x

    Article  Google Scholar 

  10. Lichtenthaler, H.K. and Wellburn, A.R., Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Biochem. Soc. Trans., 1983, vol. 11, p. 591. https://doi.org/10.1042/bst0110591

    Article  CAS  Google Scholar 

  11. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189. https://doi.org/10.1016/0003-9861(68)90654-1

    Article  CAS  PubMed  Google Scholar 

  12. Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines, Plant Sci., 2000, vol. 151, p. 59.

    Article  CAS  Google Scholar 

  13. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, p. 248. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  14. Giannopolitis, C.N. and Ries, S.K., Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings, Plant Physiol., 1977, vol. 59, p. 315. https://doi.org/10.1104/pp.59.2.315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, p. 121 https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  16. Abeles, F.B. and Biles, C.L., Characterization of peroxidases in lignifying peach fruit endocarp, Plant Physiol., 1991, vol. 95, p. 269. https://doi.org/10.1104/pp.95.1.269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raymond, J., Rakariyatham, N., and Azanza, J.L., Purification and some properties of polyphenoloxidase from sunflower seeds, Phytochem., 1993, vol. 34, p. 927. https://doi.org/10.1016/S0031-9422(00)90689-7

    Article  CAS  Google Scholar 

  18. Conde, E., Cadahía, E., and Garcia-Vallejo, M.C., HPLC analysis of flavonoids and phenolic acids and aldehydes in Eucalyptus spp., Chromatographia, 1995, vol. 41, p. 657. https://doi.org/10.1007/BF02267800

    Article  CAS  Google Scholar 

  19. Akkol, E.K., Göger, F., Koşar, M., and Başer, K.H.C., Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey, Food Chem., 2008, vol. 108, p. 942. https://doi.org/10.1016/j.foodchem.2007.11.071

    Article  CAS  PubMed  Google Scholar 

  20. Chang, C.-C., Yang, M.-H., Wen, H.-M., and Chern, J.-C., Estimation of total flavonoid content in propolis by two complementary colorimetric methods, J. Food Drug Anal., 2002, vol. 10, p. 3. https://doi.org/10.38212/2224-6614.2748

    Article  Google Scholar 

  21. Wagner, G.J., Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts, Plant Physiol., 1979, vol. 64, p. 88. https://doi.org/10.1104/pp.64.1.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, p. 205. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  23. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A.T, and Smith, F., Colorimetric method for determination of sugars and related substances, Anal. Chem., 1956, vol. 28, p. 350. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  24. Odjegba, V.J. and Chukwunwike, I.C., Physiological responses of Amaranthus hybridus L. under salinity stress, Niger. J. Life Sci., 2015, vol. 5, p. 242. https://doi.org/10.1590/1983-40632016v4742580

    Article  Google Scholar 

  25. Menezes, R.V., de Azevedo Neto, A.D., de Oliveira Ribeiro, M., and Cova, A.M.W., Growth and contents of organic and inorganic solutes in amaranth under salt stress, Pesq. Agropec. Trop., Goiânia, 2017, vol. 47, p. 22.

    Book  Google Scholar 

  26. **a, X., Ling, L., and Zhang, W., Genesis of pure Se (0) nano-and micro-structures in wastewater with nanoscale zero-valent iron (nZVI), Environ. Sci. Nano, 2017, vol. 4, p. 52. https://doi.org/10.1039/C6EN00231E

    Article  CAS  Google Scholar 

  27. Zahedi, S.M., Abdelrahman, M., Hosseini, M.S., Hoveizeh, N.F., and Tran, L.-S.P., Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles, Environ. Pollut., 2019, vol. 253, p. 246. https://doi.org/10.1016/j.envpol.2019.04.078

    Article  CAS  PubMed  Google Scholar 

  28. Kiumarzi, F., Morshedloo, M.R., Zahedi, S.M., Mumivand, H., Behtash, F., Hano, C., Chen, J.-T., and Lorenzo, J.M., Selenium nanoparticles (Se-NPs) Alleviates salinity damages and improves phytochemical characteristics of pineapple mint (Mentha suaveolens Ehrh.), Plants, 2022, vol. 11, p. 1384. https://doi.org/10.3390/plants11101384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parvaneh, R., Seyed, M.H., and Shahrokh, T., The studying effect of drought stress on germination, proline, sugar, lipid, protein and chlorophyll content in purslane (Portulaca oleracea L.) leaves, J. Med. Plants Res., 2012, vol. 6, p. 1539. https://doi.org/10.5897/JMPR11.698

    Article  CAS  Google Scholar 

  30. Boghdady, M.S., Desoky, E., Azoz, S.N., and Abdelaziz, D.M., Effect of selenium on growth, physiological aspects and productivity of faba bean (Vicia faba L.), Egypt. J. Agron., 2017, vol. 39, p. 83. https://doi.org/10.21608/agro.2017.662.1058

    Article  Google Scholar 

  31. Elkelish, A.A., Soliman, M.H., Alhaithloul, H.A., and El-Esawi, M.A., Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism, Plant Physiol. Biochem., 2019, vol. 137, p. 144. https://doi.org/10.1016/j.plaphy.2019.02.004

    Article  CAS  PubMed  Google Scholar 

  32. Salama, H.M.H., Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.), Int. Res. J. Biotechnol., 2012, vol. 3, p. 190.

    Google Scholar 

  33. Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H., and Li, D., Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress, Sci. Rep., 2017, vol. 7, p. 42039. https://doi.org/10.1038/srep42039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alyemeni, M.N., Ahanger, M.A., Wijaya, L., Alam, P., Bhardwaj, R., and Ahmad, P., Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system, Protoplasma, 2018, vol. 255, p. 459. https://doi.org/10.1007/s00709-017-1162-4

    Article  CAS  PubMed  Google Scholar 

  35. El-Badri, A.M., Hashem, A.M., Batool, M., Sherif, A., Nishawy, E., Ayaad, M., Hassan, H.M., Elrewainy, I.M., Wang, J., and Kuai, J., Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L., J. Nanobiotechnol., 2022, vol. 20, p. 163. https://doi.org/10.1186/s12951-022-01370-4

    Article  CAS  Google Scholar 

  36. El-Badri, A.M., Batool, M., Wang, C., Hashem, A.M., Tabl, K.M., Nishawy, E., Kuai, J., Zhou, G., and Wang, B., Selenium and zinc oxide nanoparticles modulate the molecular and morpho-physiological processes during seed germination of Brassica napus under salt stress, Ecotoxicol. Environ. Saf., 2021, vol. 225, p. 112695. https://doi.org/10.1016/j.ecoenv.2021.112695

    Article  CAS  PubMed  Google Scholar 

  37. Shalaby, T.A., Abd-Alkarim, E., El-Aidy, F., Hamed, E.-S., Sharaf-Eldin, M., Taha, N., El-Ramady, H., Bayoumi, Y., and Dos Reis, A.R., Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress, Ecotoxicol. Environ. Saf., 2021, vol. 212, p. 111962. https://doi.org/10.1016/j.ecoenv.2021.111962

    Article  CAS  PubMed  Google Scholar 

  38. Valifard, M., Mohsenzadeh, S., Kholdebarin, B., and Rowshan, V., Effects of salt stress on volatile compounds, total phenolic content and antioxidant activities of Salvia mirzayanii, South African J. Bot., 2014, vol. 93, p. 92. https://doi.org/10.1016/j.sajb.2014.04.002

    Article  CAS  Google Scholar 

  39. Ashraf, M.A., Akbar, A., Parveen, A., Rasheed, R., Hussain, I., and Iqbal, M., Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress, Plant Physiol. Biochem., 2018, vol. 123, p. 268. https://doi.org/10.1016/j.plaphy.2017.12.023

    Article  CAS  PubMed  Google Scholar 

  40. Gharsallah, C., Fakhfakh, H., Grubb, D., and Gorsane, F., Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars, AoB Plants, 2016, vol. 8, p. plw055. https://doi.org/10.1093/aobpla/plw055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by College of Science, University of Tehran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Niknam.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: CAT, catalase; MDA malondialdehyde; PPO, polyphenol oxidase; SOD, superoxide dismutase; TCA, trichloroacetic acid; NPs, nanoparticles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardari, M., Rezayian, M., Niknam, V. et al. Selenium and Nano-Selenium Diminish Salt Stress-Mediated Oxidative Damage in Narcissus tazetta by Up-Regulating Enzymatic and Non-Enzymatic Antioxidants. Russ J Plant Physiol 70, 210 (2023). https://doi.org/10.1134/S1021443723602124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723602124

Keywords:

Navigation