Log in

Biochemical Mechanisms in Durum Wheat (Triticum durum Desf.) under Abiotic Stress, Grown in a Hydroponic System

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Plants respond to different stresses using different mechanisms depending on the plant species and variety. This study aims to assess the physiological behavior of durum wheat (Triticum durum Desf.) under various types of abiotic stress and to look for possible correlations between biochemical and physiological parameters during each stress. Simeto variety is grown in a hydroponic culture chamber and then subjected to four stresses (salinity, cold, heat, and drought) during the stem extension stage. The contents of water, chlorophyll, total sugars, and proline are measured on the fresh leaves of stressed plants. The highest proline values for salt and heat stress were 1.53 and 1.56 µmol/g fr wt, respectively. Water stress increased the content of soluble sugars by 59.62 µmol/g fr wt significantly. When compared to the control and cold stress (16.61 µg/g fr wt), salinity, drought, and heat stress significantly increased the chlorophyll content of cultivated wheat, which was 57.43 µg/g fr wt. Drought and salinity stresses were applied to cultivated durum wheat, resulting in a decrease in water content in fresh leaf tissues of 39.28 and 19.45%, respectively. The water content of the control wheat crop was 79.31%. Wheat’s stress response is based on an osmoregulatory mechanism that involves proline accumulation. Salt and heat were the primary stressors with the greatest negative impact on cultivated wheat. The most significant associations between heat stress and soluble sugars levels and their correlation with proline, and total chlorophyll content and its correlation with chlorophyll a were discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Del Pozo, A., Matus, I., Ruf, K., Castillo, D., Méndez-Espinoza, A.M., and Serret, M.D., Genetic advance of durum wheat under high yielding conditions: The case of Chile, Agronomy, 2019, vol. 9, p. 454. https://doi.org/10.3390/agronomy9080454

    Article  CAS  Google Scholar 

  2. Shiferaw, B., Smale, M., Braun, H.-J., Duveiller, E., Reynolds, M., and Muricho, G., Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security, Food Secur., 2013, vol. 5, p. 291. https://doi.org/10.1007/s12571-013-0263-y

    Article  Google Scholar 

  3. Aroca, R., Porcel, R., and Ruiz-Lozano, J.M., Regulation of root water uptake under abiotic stress conditions, J. Exp. Bot., 2012, vol. 63, p. 43. https://doi.org/10.1093/jxb/err266

    Article  CAS  PubMed  Google Scholar 

  4. Farooq, M., Wahid, A., Lee, D.-J., Cheema, S.A., and Aziz, T., Drought stress: Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice, J. Agron. Crop Sci., 2010, vol. 196, p. 336. https://doi.org/10.1111/j.1439-037X.2010.00422.x

    Article  CAS  Google Scholar 

  5. Zegaoui, Z., Planchais, S., Cabassa, C., Djebbar, R., Belbachir, O.A., and Carol, P., Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought, J. Plant Physiol., 2017, vol. 218, p. 26. https://doi.org/10.1016/j.jplph.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  6. Khare, T., Srivastava, A.K., Suprasanna, P., and Kumar, V., Individual and additive stress impacts of Na+ and Cl‾ on proline metabolism and nitrosative responses in rice, Plant Physiol. Biochem., 2020, vol. 152, p. 44. https://doi.org/10.1016/j.plaphy.2020.04.028

    Article  CAS  PubMed  Google Scholar 

  7. Dias, K.O.D.G., Gezan, S.A., Guimarães, C.T., Nazarian, A., da Costa e Silva, L., Parentoni, S.N., de Oliveira Guimarães, P.E., de Oliveira Anoni, C., Pádua, J.M.V., and de Oliveira Pinto, M., Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials, Heredity, 2018, vol. 121, p. 24. https://doi.org/10.1038/s41437-018-0053-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saeidi, M., Moradi, F., and Abdoli, M., Impact of drought stress on yield, photosynthesis rate, and sugar alcohols contents in wheat after anthesis in semiarid region of Iran, Arid Land Res. Manag., 2017, vol. 31, p. 204. https://doi.org/10.1080/15324982.2016.1260073

    Article  CAS  Google Scholar 

  9. ElSayed, A.I., Rafudeen, M.S., and Golldack, D., Physiological aspects of raffinose family oligosaccharides in plants: protection against abiotic stress, Plant Biol., 2014, vol. 16, p. 1. https://doi.org/10.1111/plb.12053

    Article  CAS  PubMed  Google Scholar 

  10. Dettori, M., Cesaraccio, C., Motroni, A., Spano, D., and Duce, P., Using CERES-Wheat to simulate durum wheat production and phenology in Southern Sardinia, Italy, Field Crops Res., 2011, vol. 120, p. 179. https://doi.org/10.1016/j.fcr.2010.09.008

    Article  Google Scholar 

  11. Lesaint, Ch., Coic method: Principle and practical application, Acta Hortic., 1982, vol. 126, p. 367. https://doi.org/10.17660/ActaHortic.1982.126.43

  12. Garnier, E. and Laurent, G., Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species, New Phytol., 1994, vol. 128, p. 725. https://doi.org/10.1111/j.1469-8137.1994.tb04036.x

    Article  Google Scholar 

  13. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, p. 205. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  14. Dubois, M., Gilles, K.A., Hamilton, J.K., and Rebers, P.T, Smith, F., Colorimetric method for determination of sugars and related substances, Anal. Chem., 1956, vol. 28, p. 350. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  15. Arnon, D.I., Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, p. 1. https://doi.org/10.1104/pp.24.1.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hare, P.D., Cress, W.A., and Van Staden, J., Proline synthesis and degradation: a model system for elucidating stress-related signal transduction, J Exp Bot., 1999, vol. 50, p. 413. https://doi.org/10.1093/jxb/50.333.413

    Article  CAS  Google Scholar 

  17. Ghosh, U.K., Islam, M.N., Siddiqui, M.N., Cao, X., and Khan, M.A.R., Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms, Plant Biol., 2022, vol. 24, p. 227. https://doi.org/10.1111/plb.13363

    Article  CAS  PubMed  Google Scholar 

  18. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., and Ahmad, A., Role of proline under changing environment, Plant Signal Behav., 2012, vol. 7, p. 1456. https://doi.org/10.4161/psb.21949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nikolaeva, M.K., Maevskaya, S.N., Shugaev, A.G., and Bukhov, N.G., Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity, Russ. J. Plant. Physiol., 2010, vol. 57, p. 87. https://doi.org/10.1134/S1021443710010127

    Article  CAS  Google Scholar 

  20. Ltaief, S. and Krouma, A., Functional dissection of the physiological traits promoting durum wheat (Triticum durum Desf.) tolerance to drought stress, Plants, 2023, vol. 12, p. 1420. https://doi.org/10.3390/plants12071420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chowdhury, M.K., Hasan, M.A., Bahadur, M.M., Islam, M.R., Hakim, M.A., Iqbal, M.A., Javed, T., Raza, A., Shabbir, R., and Sorour, S., Evaluation of drought tolerance of some wheat (Triticum aestivum L.) genotypes through phenology, growth, and physiological indices, Agronomy, 2021, vol. 11, p. 1792. https://doi.org/10.3390/agronomy11091792

    Article  CAS  Google Scholar 

  22. Mwadzingeni, L., Shimelis, H., Tesfay, S., and Tsilo, T.J., Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analyses, Front Plant Sci., 2016, vol. 7. https://doi.org/10.3389/fpls.2016.01276

  23. Ashraf, M.A., Iqbal, M., Rasheed, R., Hussain, I., Perveen, S., and Mahmood, S., Dynamic proline metabolism: importance and regulation in water-limited environments, in Plant Metabolites and Regulation Under Environmental Stress, Amsterdam: Elsevier, 2018, p. 323. https://doi.org/10.1016/B978-0-12-812689-9.00016-9

    Book  Google Scholar 

  24. Khatkar, D. and Kuhad, M.S., Short-term salinity induced changes in two wheat cultivars at different growth stages, Biol Plant., 2000, vol. 43, p. 629. https://doi.org/10.1023/A:1002868519779

    Article  CAS  Google Scholar 

  25. Hellmann, H., Funck, D., Rentsch, D., and Frommer, W.B., Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application, Plant Physiol., 2000, vol. 122, p.357. https://doi.org/10.1104/pp.122.2.357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu, M., Shi, Z., Zhang, Z., Zhang, Y., and Li, H., Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress, Plant Growth Regul., 2012, vol. 68, p. 177. https://doi.org/10.1007/s10725-012-9705-3

    Article  CAS  Google Scholar 

  27. Ahmed, J.U. and Hassan, M.A., Evaluation of seedling proline content of wheat genotypes in relation to heat tolerance, Bangladesh J. Bot., 2011, vol. 40, p. 17. https://doi.org/10.3329/bjb.v40i1.7991

    Article  Google Scholar 

  28. Katakpara, Z.A., Gajera, H.P., Vaja, K.N., Dabhi, K.H., and Golakiya, B.A., Evaluation of heat tolerance indices in bread wheat (Triticum aestivum L.) genotypes based on physiological, biochemical and molecular markers, Indian J. Plant Physiol., 2016, vol. 21, p. 197. https://doi.org/10.1007/s40502-016-0222-7

    Article  CAS  Google Scholar 

  29. Wang, Y., **ong, F., Nong, S., Liao, J., **ng, A., Shen, Q., Ma, Y., Fang, W., and Zhu, X., Effects of nitric oxide on the GABA, polyamines, and proline in tea (Camellia sinensis) roots under cold stress, Sci. Rep., 2020, vol. 10. https://doi.org/10.1038/s41598-020-69253-y

  30. Wang, Y.X., Yu, T.F., Wang, C.X., Wei, J.T., Zhang, S.X., Liu, Y.W., Chen, J., Zhou, Y.B., Chen, M., and Ma, Y.Z., Heat shock protein TaHSP17.4, a TaHOP interactor in wheat, improves plant stress tolerance, Int. J. Biol. Macromol., 2023, vol. 246. https://doi.org/10.1016/j.ijbiomac.2023.125694

  31. Sami, F., Yusuf, M., Faizan, M., Faraz, A., and Hayat, S., Role of sugars under abiotic stress, Plant Physiol. Biochem., 2016, vol. 109, p. 54. https://doi.org/10.1016/j.plaphy.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  32. Rosa, M., Prado, C., Podazza, G., Interdonato, R., González, J.A., Hilal, M., and Prado, F.E., Soluble sugars, Plant Signal Behav., 2009, vol. 4, p. 388. https://doi.org/10.4161/psb.4.5.8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. León, P. and Sheen, J., Sugar and hormone connections, Trends Plant Sci., 2003, vol. 8, p. 110. https://doi.org/10.1016/S1360-1385(03)00011-6

    Article  CAS  PubMed  Google Scholar 

  34. Rathinasabapathi, B., Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways, Ann Bot., 2000, vol. 86, p. 709. https://doi.org/10.1006/anbo.2000.1254

    Article  CAS  Google Scholar 

  35. Krasensky, J. and Jonak, C., Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks, J. Exp. Bot., 2012, vol. 63, p. 1593. https://doi.org/10.1093/jxb/err460

    Article  CAS  PubMed  Google Scholar 

  36. Kameli, A. and Lösel, D.M., Growth and sugar accumulation in durum wheat plants under water stress, New Phytol., 1996, vol. 132, p. 57. https://doi.org/10.1111/j.1469-8137.1996.tb04508.x

    Article  CAS  PubMed  Google Scholar 

  37. Sairam, R.K., Rao, K.V., and Srivastava, G.C., Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration, Plant Sci., 2002, vol. 163, p. 1037. https://doi.org/10.1111/j.1439-037X.1997.tb00486.x

    Article  CAS  Google Scholar 

  38. Chaib, G., Benlaribi, M., and Hazmoune, T., Accumulation d’osmoticums chez le blé dur (Triticum durum Desf.) sous stress hydrique, Eur. Sci. J., 2015, vol. 11. https://eujournal.org/index.php/esj/article/view/6123.

  39. Abdalla, M.M., Beneficial effects of diatomite on the growth, the biochemical contents and polymorphic DNA in Lupinus albus plants grown under water stress, Agric. Biol. J. North Am., 2011, vol. 2, p. 207. https://doi.org/10.5251/ABJNA.2011.2.2.207.220

    Article  CAS  Google Scholar 

  40. Chen, H. and Jiang, J.G., Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity, Environ. Rev., 2010, vol. 18, p. 309. https://doi.org/10.1139/A10-014

    Article  CAS  Google Scholar 

  41. Arabzadeh, N., The effect of drought stress on soluble carbohydrates (sugars) in two species of Haloxylon persicum and Haloxylon aphyllum, Asian J. Plant Sci., 2012, vol. 11, p. 44. https://doi.org/10.3923/ajps.2012.44.51

    Article  Google Scholar 

  42. Cao, X., Mondal, S., Cheng, D., Wang, C., Liu, A., Song, J., Li, H., Zhao, Z., and Liu, J., Evaluation of agronomic and physiological traits associated with high temperature stress tolerance in the winter wheat cultivars, Acta Physiol. Plant., 2015, vol. 37, p. 1. https://doi.org/10.1007/s11738-015-1835-6

    Article  CAS  Google Scholar 

  43. Munjal, R. and Dhanda, S.S., Assessment of drought resistance in Indian wheat cultivars for morpho-physiological traits, Ekin J. Crop Breed Genet., 2016, vol. 2, p. 74. https://dergipark.org.tr/en/pub/ekinjournal/issue/22787/243195.

    Google Scholar 

  44. Huihui, Z., Yuze, H., Kaiwen, G., Zisong, X., Liu, S., Wang, Q., Wang, X., Nan, X., Wu, Y., and Guangyu, S., Na+ accumulation alleviates drought stress induced photosynthesis inhibition of PSII and PSI in leaves of Medicago sativa, J. Plant Interact., 2021, vol. 16, p. 1. https://doi.org/10.1080/17429145.2020.1866091

    Article  CAS  Google Scholar 

  45. Yang, C., Zhang, Z., Gao, H., Fan, X., Liu, M., and Li, X., The mechanism by which NaCl treatment alleviates PSI photoinhibition under chilling-light treatment, J. Photochem. Photobiol. B., 2014, vol. 140, p. 286. https://doi.org/10.1016/j.jphotobiol.2014.08.012

    Article  CAS  PubMed  Google Scholar 

  46. Ma, Q., Yue, L.J., Zhang, J.L., Wu, G.Q., Bao, A.-K., and Wang, S.M., Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum, Tree Physiol., 2012, vol. 32, p. 4. https://doi.org/10.1093/treephys/tpr098

    Article  CAS  PubMed  Google Scholar 

  47. Jiang, Y. and Huang, B., Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation, Crop Sci., 2001, vol. 41, p. 436. https://doi.org/10.2135/cropsci2001.412436x

    Article  CAS  Google Scholar 

  48. Parida, A.K. and Das, A.B., Salt tolerance and salinity effects on plants: a review, Ecotoxicol. Environ. Saf., 2005, vol. 60, p. 324. https://doi.org/10.1016/j.ecoenv.2004.06.010

    Article  CAS  PubMed  Google Scholar 

  49. Almeselmani, M., Deshmukh, P.S., and Chinnusamy, V., Effects of prolonged high temperature stress on respiration, photosynthesis and gene expression in wheat (Triticum aestivum L.) varieties differing in their thermotolerance, Plant Stress, 2012, vol. 6, p. 25. https://doi.org/10.5539/jas.v3n3p127

    Article  Google Scholar 

  50. Abdelmoghny, A.M., Raghavendra, K.P., Sheeba, J.A., Santosh, H.B., Meshram, J.H., Singh, S.B., Kranthi, K.R., and Waghmare, V.N., Morpho-physiological and molecular characterization of drought tolerance traits in Gossypium hirsutum genotypes under drought stress, Physiol. Mol. Biol. Plants, 2020, vol. 26, p. 2339. https://doi.org/10.1007/s12298-020-00890-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boyer, J.S., James, R.A., Munns, R., Condon, T.A., and Passioura, J.B., Osmotic adjustment leads to anomalously low estimates of relative water content in wheat and barley, Funct. Plant Biol., 2008, vol. 35, p. 1172. https://doi.org/10.1071/FP08157

    Article  PubMed  Google Scholar 

  52. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., Plant drought stress: Effects, mechanisms and management, Agron Sustain Dev., 2009, vol. 29, p. 185. https://doi.org/10.1051/agro:2008021

    Article  Google Scholar 

  53. Soni, S., Kumar, A., Sehrawat, N., Kumar, N., Kaur, G., Kumar, A., and Mann, A., Variability of durum wheat genotypes in terms of physio-biochemical traits against salinity stress, Cereal Res. Commun., 2021, vol. 49, p. 45. https://doi.org/10.1007/s42976-020-00087-0

    Article  CAS  Google Scholar 

  54. Cui, Y.N., **a, Z.R., Ma, Q., Wang, W.Y., Chai, W.W., and Wang, S.M., The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress, Plant Physiol. Biochem. PPB., 2019, vol. 135, p. 489. https://doi.org/10.1016/j.plaphy.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  55. Morant-Manceau, A., Pradier, E., and Tremblin, G., Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticaleand its parental species under salt stress, J. Plant Physiol., 2004, vol. 161, p. 25. https://doi.org/10.1078/0176-1617-00963

    Article  CAS  PubMed  Google Scholar 

  56. Oulmi, A., Benmahammed, A., Laala, Z., Adjabi, A., and Bouzerzour, H., Phenotypic variability and relations between the morpho-physiological traits of three F5 populations of durum wheat (Triticum durum Desf.) evaluated under semi-arid conditions, Adv. Environ Biol., 2014, p. 436.

  57. Wang, W., Wang, X., Lv, Z., Khanzada, A., Huang, M., Cai, J., Zhou, Q., Huo, Z., and Jiang, D., Effects of Cold and Salicylic Acid Priming on Free Proline and Sucrose Accumulation in Winter Wheat Under Freezing Stress, J. Plant Growth Regul., 2022, vol. 41, p. 2171. https://doi.org/10.1007/s00344-021-10412-4

    Article  CAS  Google Scholar 

  58. Kocsy, G., Pál, M., Soltész, A., Szalai, G., Boldizsár, Á., Kovács, V., and Janda, T., Low temperature and oxidative stress in cereals, Acta Agron Hung., 2011, vol. 59, p. 169. https://doi.org/10.1556/AAgr.59.2011.2.7

    Article  CAS  Google Scholar 

  59. Zeng, Y., Yu, J., Cang, J., Liu, L., Mu, Y., Wang, J., and Zhang, D., Detection of sugar accumulation and expression levels of correlative key enzymes in winter wheat (Triticum aestivum) at low temperatures, Biosci. Biotechnol. Biochem., 2011, vol. 75, p. 681. https://doi.org/10.1271/bbb.100813

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mallem.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallem, H., Nakkab, S. & Houyou, Z. Biochemical Mechanisms in Durum Wheat (Triticum durum Desf.) under Abiotic Stress, Grown in a Hydroponic System. Russ J Plant Physiol 71, 7 (2024). https://doi.org/10.1134/S1021443723601957

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723601957

Keywords:

Navigation