Log in

Salicylic Acid Improves Cold Resistance of Solanum tuberosum Regenerants via Regulation of the Antioxidant System

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Pretreatment of roots with salicylic acid (SA) and its role in control over morphophysiological parameters characterizing cold resistance of plant regenerants were examined in potato (Solanum tuberosum L.). It was found that potato plants exposed to low above-zero temperatures (4°C, 3 days) failed to restore initial growth parameters (plant height, leaf surface area, number of stolons, and weight of the organs) and oxidative status (intensity of lipid peroxidation) of the roots and leaves after transfer to favorable conditions (22°C, 10 days). A short-term (4-h-long) pretreatment of the roots with 0.1 µM SA minimized the adverse effect of deferred chilling. SA treatment promoted restoration of the initial plant phenotype after hypothermia, which caused a rise in growth parameters (number and surface area of the leaves and number of stolons) as compared with plants exposed to chilling without SA treatment. It was shown that pretreatment with SA improves cold resistance of potato plants owing to changes in the activity of antioxidant enzymes (superoxide dismutase and guaiacol-dependent peroxidase) and in the level of nonenzymatic antioxidants (ascorbic acid, anthocyans, total flavonoids and phenolic compounds). Depending on conditions, SA alters the ratio between individual flavonoids in the leaf. An ambiguous response to chilling and SA treatment was observed in two lines of potato regenerants produced by means of in vitro microcloning from the apical and middle part of the shoot, which is probably associated with their differing hormonal status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Titov, A.F., Shibaeva, T.G., Ikkonen, E.N., and Sherudilo, E.G., Plant responses to a daily short-term temperature drop: phenomenology and mechanisms, Russ. J. Plant Physiol., 2020, vol. 67, p. 1003. https://doi.org/10.1134/S1021443720060187

    Article  CAS  Google Scholar 

  2. Ikkonen, E.N., Shibaeva, T.G., Sherudilo, E.G., and Titov, A.F., Reaction of respiration of winter wheat seedlings to prolonged and short daily decrease in temperature, Russ. J. Plant Physiol., 2020, vol. 67, p. 312. https://doi.org/10.31857/S0015330320020062

    Article  Google Scholar 

  3. Liu, Y., Sun, T., Sun, Y., Zhang, Y., Radojičić, A., Ding, Y., Tian, H., Huang, X., Lan, J., Chen, S., Ordu-na, A.R., Zhang, K., Jetter, R., Li, X., and Zhang, Y., Diverse roles of the salicylic acid receptors NPR1 and NPR3/NPR4 in plant immunity, Plant Cell, 2020, vol. 32, p. 4002. https://doi.org/10.1105/tpc.20.00499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kumar, D., Salicylic acid signaling in disease resistance, Plant Sci., 2014, vol. 228, p. 127. https://doi.org/10.1016/j.plantsci.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  5. Arif, Y., Sami, F., Siddiqui, H., Bajguz, A., and Hayat, S., Salicylic acid in relation to other phytohormones in plant: a study towards physiology and signal transduction under challenging environment, Environ. Exp. Bot., 2020, vol. 175, p. 104040. https://doi.org/10.1016/j.envexpbot.2020.104040

    Article  CAS  Google Scholar 

  6. Sakhabutdinova, A.R., Fatkhutdinova, D.R., and Shakirova, F.M., Effect of salicylic acid on the activity of antioxidant enzymes in wheat under saline conditions, Prikl. biokhim. mikrobiol., 2004, vol. 40, p. 579.

    CAS  PubMed  Google Scholar 

  7. Fen'ko, A.A., Repkina, N.S., and Talanova, V.V., The effect of salicylic acid on the cold tolerance of cucumber seedlings, Tr. Karel. nauch. ts. RAN, 2015, vol. 1, p. 26. https://doi.org/10.17076/eb188

    Article  Google Scholar 

  8. Fariduddin, Q., Hayat, S., Ahmad, A., Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea, Photosynthetica, 2003, vol. 41, p. 281. https://doi.org/10.1023/B:PHOT.0000011962.05991.6c

    Article  CAS  Google Scholar 

  9. Zafar, Z., Rasheed, F., Atif, R.M., Javed, M.A., Maqsood, M., and Gailing, O., Foliar application of salicylic acid improves water stress tolerance in Conocarpus erectus L. and Populus deltoids L. saplings: evidence from morphological, physiological, and biochemical changes, Plants (Basel), 2021, vol. 10, p. 1242. https://doi.org/10.3390/plants10061242

    Article  CAS  PubMed  Google Scholar 

  10. Kadyrbaev, M.K., Golovatskaya, I.F., and Satkanov, M.Zh., Features of regenerants morphogenesis and metabolism in vitro, obtained from different fragments of potato shoots, Tomsk State Univ. J. Biol., 2021, vol. 55, p. 114. https://doi.org/10.17223/19988591/55/7

  11. Buege, J.A. and Aust, S.D., Microsomal lipid peroxidation, Methods Enzymol., 1978, vol. 52, p. 302. https://doi.org/10.1016/s0076-6879(78)52032-6

    Article  CAS  PubMed  Google Scholar 

  12. Bates, L.S., Waldran, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1973, vol. 39, p. 205. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  13. Hewitt, E.J. and Dickes, G.J., Spectrophotometric measurements on ascorbic acid and their use for the estimation of ascorbic acid and dehydroascorbic acid in plant tissue, Biochem J., 1961, vol. 78, p. 384. https://doi.org/10.1042/bj0780384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, p. 350. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  15. Mancinelli A.L., Hoff A.M., Cottrell M. Anthocyanin production in chl-rich and chl-poor seedlings, Plant Physiol., 1988, vol. 86, p. 652. https://doi.org/10.1104/pp.86.3.652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lomboeva, S.S., Tankhaeva, L.M., and Olennikov, D.N., Method for quantitative determination of the total content of flavonoids in the aerial part of Orthilia secunda (L.) House, Khim. rast. syr., 2008, vol. 2, p. 65.

  17. Zimina, L.N., Kurkin, V.A., and Ryzhov, V.M., Study of the flavonoid composition of St. John’s wort herb by high performance liquid chromatography, Med. alm., 2012, vol. 2, p. 227.

    Google Scholar 

  18. Zagoskina, N.V., Dubravina, G.A., Alyavina, A.K., and Goncharuk, E.A., Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures, Russ. J. Plant Physiol., 2003, vol. 50, p. 270. https://doi.org/10.1023/A:1022945819389

    Article  CAS  Google Scholar 

  19. Beauchamp, Ch. and Fridovich, I., Superoxide dismutase improved assays and an assay applicable to acrylamide gels, Anal Biochem., 1971, vol. 44, p. 276. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  PubMed  Google Scholar 

  20. Shevyakova, N.I., Stetsenko, L.A., Meshcheryakov, A.B., and Kuznetsov, Vl.V., The activity of the peroxidase system in the course of stress-induced CAM development, Russ. J. Plant Physiol., 2002, vol. 49, p. 598. https://doi.org/10.1023/A:1020224531599

    Article  CAS  Google Scholar 

  21. Esen, A., A simple method for quantitative, semiquantitative, and qualitative assay of protein, Anal Biochem., 1978, vol. 89, p. 264. https://doi.org/10.1016/0003-2697(78)90749-2

    Article  CAS  PubMed  Google Scholar 

  22. Singh, R., Singh, S., Parihar, P., Mishra, R.K., Tripathi, D.K., Singh, V.P., Chauhanm, D.K., Prasad, S.M., Reactive oxygen species (ROS): beneficial companions of plants’ developmental processes, Front Plant Sci., 2016, vol. 7, p. 1299. https://doi.org/10.3389/fpls.2016.01299

    Article  PubMed  PubMed Central  Google Scholar 

  23. Skyba, M., Petijová, L., Košuth, J., Koleva, D.P., Ganeva, T.G., Kapchina-Toteva, V.M., Cellárová, E., Oxidative stress and antioxidant response in Hypericum perforatum L. plants subjected to low temperature treatment, J. Plant Physiol., 2012, vol. 169, p. 955. https://doi.org/10.1016/j.jplph.2012.02.017

    Article  CAS  PubMed  Google Scholar 

  24. Eom, S.H., Ahn, M.A., Kim, E., Lee, H.J., Lee, J.H., Wi, S.H., Kim, S.K., Lim, H.B., and Hyun, T.K., Plant response to cold stress: cold stress changes antioxidant metabolism in heading type kimchi cabbage (Brassica rapa L. ssp. Pekinensis), Antioxidants (Basel), 2022, vol. 11, p. 700. https://doi.org/10.3390/antiox11040700

    Article  CAS  PubMed  Google Scholar 

  25. Ogorodnova, U.A., Akhmetov, A.M., Shakirova, F.M., and Timofeeva, O.A., Changes in hormonal status and expression of lectin genes in wheat seedlings treated with stevioside and exposed to low above-zero temperatures, Russ. J. Plant Physiol., 2020, vol. 67, p. 259. https://doi.org/10.1134/S1021443720010136

    Article  CAS  Google Scholar 

  26. Huang, H., Ullah, F., Zhou, D.X., Yi, M., and Zhao, Y., Mechanisms of ROS regulation of plant development and stress responses, Front. Plant Sci., 2019, vol. 25, p. 800. https://doi.org/10.3389/fpls.2019.00800

    Article  Google Scholar 

  27. Jaspers, P. and Kangasjärvi, J., Reactive oxygen species in abiotic stress signaling, Physiol. Plant., 2010, vol. 138, p. 405. https://doi.org/10.1111/j.1399-3054.2009.01321.x

    Article  CAS  PubMed  Google Scholar 

  28. Iqbal, N., Fatma, M., Gautam, H., Sehar, Z., Rasheed, F., Iqbal, M., Khan, R., Sofo, A., and Khan, N.A., Salicylic acid increases photosynthesis of drought grown mustard plants effectively with sufficient-N via regulation of ethylene, abscisic acid, and nitrogen-use efficiency, J. Plant Growth Regul., 2022, vol. 41, p. 1966. https://doi.org/10.1007/s00344-021-10565-2

    Article  CAS  Google Scholar 

  29. Khan, M.I.R., Fatma, M., Per, T.S., Anjum, N.A., and Khan, N.A., Salicylic acid – induced abiotic stress tolerance and underlying mechanisms in plants, Front. Plant Sci., 2015, vol. 6, p. 462. https://doi.org/10.3389/fpls.2015.00462

    Article  PubMed  PubMed Central  Google Scholar 

  30. Prodhan, M.Y., Munemasa, S., Nahar, M.N.-E.N., Nakamura, Y., and Murata, Y., Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway, Plant Physiol., 2018, vol. 178, p. 441. https://doi.org/10.1104/pp.18.00321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Szalai, G., Pál, M., and Janda, T., Abscisic acid may alter the salicylic acid-related abiotic stress response in maize, Acta Biol. Szeged., 2011, vol. 55, p. 155.

    Google Scholar 

  32. Dugas, A.J., Castañeda-Acosta, Jr.J., Bonin, G.C., Price, K.L., Fischer, N.H., and Winston, G.W., Evaluation of the total peroxyl radical-scavenging capacity of flavonoids:  structure−activity relationships, J. Nat Prod., 2000, vol. 63, p. 327. https://doi.org/10.1021/np990352n

    Article  CAS  PubMed  Google Scholar 

  33. Cai, W., Chen, Y., **e, L., Zhang, H., and Hou, C., Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar‑containing analogues, Eur. Food Res. Technol., 2014, vol. 238, p. 121. https://doi.org/10.1007/s00217-013-2091-x

    Article  CAS  Google Scholar 

  34. Kuznetsov, V.V. and Shevyakova, N.I., Proline under stress: biological role, metabolism, and regulation, Russ. J. Plant Physiol., 1999, vol. 46, p. 274.

    CAS  Google Scholar 

  35. Naraikina, N.V., Pchelkin, V.P., Tsydendambaev, V.D., and Trunova, T.I., Changes in fatty acid composition and lipid content of potato leaves during low temperature hardening: role of δ12-acyl-lipid desaturase, Russ. J. Plant Physiol., 2020, vol. 67, p. 267. https://doi.org/10.1134/S1021443720020119

    Article  CAS  Google Scholar 

  36. Butsanets, P.A., Shugaeva, N.A., and Shugaev, A.G., Effect of melatonin and salicylic acid on ROS generation by mitochondria of lupine seedlings, Russ. J. Plant Physiol., 2021, vol. 68, p. 745. https://doi.org/10.1134/S1021443721040038

    Article  CAS  Google Scholar 

  37. Ignatenko, A.A., Talanova, V.V., Repkina, N.S., and Titov, A.F., Effect of salicylic acid on antioxidant enzymes and cold tolerance of cucumber plants, Russ. J. Plant Physiol., 2021, vol. 68, p. 491. https://doi.org/10.1134/S1021443721020059

    Article  CAS  Google Scholar 

  38. Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E.G., Cicek, N., Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity, J. Plant Physiol., 2007, vol. 164, p. 728. https://doi.org/10.1016/j.jplph.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  39. Rao, M.V., Paliyath, G., Ormrod, D.P., Murr, D.P., and Watkins, C.B., Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes (salicylic acid-mediated oxidative damage requires H2O2), Plant Physiol., 1997, vol. 115, p. 137. https://doi.org/10.1104/pp.115.1.137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vicente, M.R.-S. and Plasencia, J., Salicylic acid beyond defence: its role in plant growth and development, J. Exp. Bot., 2011, vol. 62, p. 3321. https://doi.org/10.1093/jxb/err031

    Article  CAS  Google Scholar 

  41. Jia, X., Wang, L., Zhao, H., Zhang, Y., Chen, Z., Xu, L., and Yi, K., The origin and evolution of salicylic acid signaling and biosynthesis in plants, Molecular Plant, 2023, vol. 16, p. 245. https://doi.org/10.1016/j.molp.2022.12.002

    Article  CAS  PubMed  Google Scholar 

  42. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., and Ahmad, A., Role of proline under changing environments: a review, Plant Signal Behav., 2012, vol. 7, p. 1456. https://doi.org/10.4161/psb.21949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Program of Development of Tomsk State University (Priority 2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Golovatskaya.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants as objects of research.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Balakshina

Abbreviations: AA—ascorbic acid; Ant—anthocyans; AR—apical regenerant; Fl—flavonoids; GPO—guaiacol-dependent peroxidase; MR—middle regenerant; PC—phenolic compounds; SA—salicylic acid; SOD—superoxide dismutase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovatskaya, I.F., Kadyrbaev, M.K., Boyko, E.V. et al. Salicylic Acid Improves Cold Resistance of Solanum tuberosum Regenerants via Regulation of the Antioxidant System. Russ J Plant Physiol 70, 112 (2023). https://doi.org/10.1134/S1021443723600319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723600319

Keywords:

Navigation