Log in

Differential Expression of Sugar Uniporter Genes of the SWEET Family in the Regulation of Qualitative Fruit Traits in Tomato Species (Solanum Section Lycopersicon)

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Tomato (Solanum lycopersicum L.) is an important crop and, due to the existence of wild related species (Solanum section Lycopersicon), a model for studying the development of the fleshy fruit. In the study, expression analysis of sugar uniporter genes SWEET1а, 1b, 1e, 3, 7a, 10a, 12c, 14, and 15 in tomato species and cultivars was carried out. In cv. Heinz (S. lycopersicum), genes that are most active in roots (SWEET1e, 3, 10a, and 12c), leaves (SWEET1a, 1e, 3, 10a, and 12c) and flowers (SWEET1a, 1b, 7a, 10a, 12s, 14, and 15) were revealed. The growth of the fruit is accompanied by an increase in the level of the SWEET 110a and 12c transcripts; maturation of the fruit is accompanied by an increase in the level of the SWEET 1a and 15 transcripts. Differential expression of the SWEET1a, 1b, 12c, and 15 genes in the ripe fruit of inbred lines obtained from crossing of S. lycopersicum cv. M82 × S. pennellii was demonstrated. qRT-PCR analysis showed that the expression of the SWEET1a and 12c genes is common for ripe fruit of the analyzed tomato species, while the expression of the SWEET1b and 10a genes is common for S. pennellii, S. habrochaites, and S. cheesmaniae. It was determined that the fructose : glucose ratio is equimolar in the accessions except for cv. Black Jack and White Beauty (fructose : glucose ≥ 1.10). Correlations between the level of SWEET gene transcripts and the ratio of hexoses was not revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Yoon, J., Cho, L.H., Tun, W., Jeon, J.S., and An, G., Sucrose signaling in higher plants, Plant Sci., 2021, vol. 302, p. 110703. https://doi.org/10.1016/j.plantsci.2020.110703

    Article  CAS  PubMed  Google Scholar 

  2. Sami, F., Siddiqui, H., and Hayat, S., Interaction of glucose and phytohormone signaling in plants, Plant Physiol. Biochem., 2019, vol. 135, p. 119. https://doi.org/10.1016/j.plaphy.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  3. Ji, Y., Nuñez Ocaña, D., Choe, D., Larsen, D.H., Marcelis, L.F.M., and Heuvelink, E., Far-red radiation stimulates dry mass partitioning to fruits by increasing fruit sink strength in tomato, New Phytol., 2020, vol. 228, p. 1914. https://doi.org/10.1111/nph.16805

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Z., Zou, L., Ren, C., Ren, F., Wang, Y., Fan, P., Li, S., and Liang, Z., VvSWEET10 mediates sugar accumulation in grapes, Genes (Basel)., 2019, vol. 10, p. 255. https://doi.org/10.3390/genes10040255

    Article  CAS  PubMed  Google Scholar 

  5. Peralta, I.E. and Spooner, D.M., Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon), Am. J. Bot., 2001, vol. 88, p. 1888.

    Article  CAS  PubMed  Google Scholar 

  6. Davies, J.N., Occurrence of sucrose in the fruit of some species of Lycopersicon, Nature, 1966, vol. 209, p. 640. https://doi.org/10.1038/209640a0

    Article  CAS  Google Scholar 

  7. Miron, D. and Schaffer, A.A., Sucrose phosphate synthase, sucrose synthase, and invertase activities in develo** fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl., Plant Physiol., 1991, vol. 95, p. 623. https://doi.org/10.1104/pp.95.2.623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beckles, D.M., Hong, N., Stamova, L., and Luengwilai, K., Biochemical factors contributing to tomato fruit sugar content: a review, Fruits, 2012, vol. 67, p. 49. https://doi.org/10.1051/fruits/2011066

    Article  CAS  Google Scholar 

  9. Shammai, A., Petreikov, M., Yeselson, Y., Faigenboim, A., Moy-Komemi, M., Cohen, S., Cohen, D., Besaulov, E., Efrati, A., Houminer, N., Bar, M., Ast, T., Schuldiner, M., Klemens, P.A.W., Neuhaus, E., et al., Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose composition of ripening tomato fruit, Plant J., 2018, vol. 96, p. 343. https://doi.org/10.1111/tpj.14035

    Article  CAS  PubMed  Google Scholar 

  10. Levin, I., Gilboa, N., Yeselson, E., Shen, S., and Schaffer, A.A., Fgr, a major locus that modulates fructose to glucose ratio in mature tomato fruit, Theor. Appl. Genet., 2000, vol. 100, p. 256. https://doi.org/10.1007/s001220050034

    Article  CAS  Google Scholar 

  11. Ho, L.H., Klemens, P.A.W., Neuhaus, H.E., Ko, H.Y., Hsieh, and S.Y., Guo, W.J., SlSWEET1a is involved in glucose import to young leaves in tomato plants, J. Exp. Bot., 2019, vol. 70, p. 3241. https://doi.org/10.1093/jxb/erz154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Julius, B.T., Leach, K.A., Tran, T.M., Mertz, R.A., and Braun, D.M., Sugar transporters in plants: new insights and discoveries, Plant Cell Physiol., 2017, vol. 58, p. 1442. https://doi.org/10.1093/pcp/pcx090

    Article  CAS  PubMed  Google Scholar 

  13. Chen, L.Q., SWEET sugar transporters for phloem transport and pathogen nutrition, New Phytol., 2014, vol. 201, p. 1150. https://doi.org/10.1111/nph.12445

    Article  CAS  PubMed  Google Scholar 

  14. Chen, L.-Q., Qu, X.-Q., Hou, B.-H., Sosso, D., Osorio, S., Fernie, A.R., and Frommer, W.B., Sucrose efflux mediated by SWEET proteins as a key step for phloem transport, Science, 2012, vol. 335, p. 207. https://doi.org/10.1126/science.1213351

    Article  CAS  PubMed  Google Scholar 

  15. Patil, G., Valliyodan, B., Deshmukh, R., Prince, S., Nicander, B., Zhao, M., Sonah, H., Song, L., Lin, L., Chaudhary, J., Liu, Y., Joshi, T., Xu, D., and Ngu-yen, H.T., Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis, BMC Genomics, 2015, vol. 16, p. 520. https://doi.org/10.1186/s12864-015-1730-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klemens, P.A., Patzke, K., Deitmer, J., Spinner, L., Le, Hir R., Bellini, C., Bedu, M., Chardon, F., Krapp, A., and Neuhaus, H.E., Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis, Plant Physiol., 2013, vol. 163, p. 1338. https://doi.org/10.1104/pp.113.224972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen, L.Q., Hou, B.H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.Q., Guo, W.J., Kim, J.G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., and White, F.F., Somerville S.C., Mudgett, M.B., et al., Sugar transporters for intercellular exchange and nutrition of pathogens, Nature, 2010, vol. 468, p. 527. https://doi.org/10.1038/nature09606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eom, J.S., Chen, L.Q., Sosso, D., Julius, B.T., Lin, I.W., Qu, X.Q., Braun, D.M., and Frommer, W.B., SWEETs, transporters for intracellular and intercellular sugar translocation, Curr. Opin. Plant Biol., 2015, vol. 25, p. 53. https://doi.org/10.1016/j.pbi.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  19. Isoda, R., Palmai, Z., Yoshinari, A., Chen, L.Q., Tama, F., Frommer, W.B., and Nakamura, M., SWEET13 transport of sucrose, but not gibberellin, restores male fertility in Arabidopsis sweet13; 14, Proc. Natl. Acad. Sci. U.S.A., 2022, vol. 119, p. e2207558119. https://doi.org/10.1073/pnas.2207558119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, H.Y., Huh, J.H., Yu, Y.C., Ho, L.H., Chen, L.Q., Tholl, D., Frommer, W.B., and Guo, W.J., The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection, Plant J., 2015, vol. 83, p. 1046. https://doi.org/10.1111/tpj.12948

    Article  CAS  PubMed  Google Scholar 

  21. Valifard, M., Le Hir, R., Müller, J., Scheuring, D., Neuhaus, H.E., and Pommerrenig, B., Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance, Plant Physiol., 2021, vol. 187, p. 2716. https://doi.org/10.1093/plphys/kiab436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Feng, C.Y., Han, J.X., Han, X.X., and Jiang, J., Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato, Gene, 2015, vol. 573, p. 261. https://doi.org/10.1016/j.gene.2015.07.055

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J., Yu, Y.C., Li, Y., and Chen, L.Q., Hexose transporter SWEET5 confers galactose sensitivity to Arabidopsis pollen germination via a galactokinase, Plant Physiol., 2022, vol. 189, p. 388. https://doi.org/10.1093/plphys/kiac068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin, I., Sosso, D., Chen, L.Q., Gase, K., Kim, S.G., Kessler, D., Klinkenberg, P.M., Gorder, M.K., Hou, B.H., Qu, X.Q., Carter, C.J., Baldwin, I.T., and Frommer, W.B., Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9, Nature, 2014, vol. 508, p. 546. https://doi.org/10.1038/nature13082

    Article  CAS  PubMed  Google Scholar 

  25. Chen, L.Q., Lin, I.W., Qu, X.Q., Sosso, D., McF-arlane, H.E., Londoño, A., Samuels, A.L., and Frommer, W.B., A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo, Plant Cell, 2015, vol. 27, p. 607. https://doi.org/10.1105/tpc.114.134585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, X., Feng, C., Wang, M., Li, T., Liu, X., and Jiang J., Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits, Hortic. Res., 2021, vol. 8, p. 186. https://doi.org/10.1038/s41438-021-00624-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ko, H.Y., Ho, L.H., Neuhaus, H.E., and Guo, W.J., Transporter SlSWEET15 unloads sucrose from phloem and seed coat for fruit and seed development in tomato, Plant Physiol., 2021, vol. 187, p. 2230. https://doi.org/10.1093/plphys/kiab290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Efremov, G.I., Slugina, M.A., Shchennikova, A.V., and Kochieva, E.Z., Differential regulation of phytoene synthase PSY1 during fruit carotenogenesis in cultivated and wild tomato species (Solanum section Lycopersicon), Plants, 2020, vol. 9, p. 1169. https://doi.org/10.3390/plants9091169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fortuny, A.P., Bueno, R.A., Pereira da Costa, J.H., Zanor, M.I., and Rodríguez, G.R., Tomato fruit quality traits and metabolite content are affected by reciprocal crosses and heterosis, J. Exp. Bot., 2021, vol. 72, p. 5407. https://doi.org/10.1093/jxb/erab222

    Article  CAS  PubMed  Google Scholar 

  30. Klee, H.J. and Giovannoni, J.J., Genetics and control of tomato fruit ripening and quality attributes, Annu. Rev. Genet., 2011, vol. 45, p. 41. https://doi.org/10.1146/annurev-genet-110410-132507

    Article  CAS  PubMed  Google Scholar 

  31. Jia, H., Jiu, S., Zhang, C., Wang, C., Tariq, P., Liu, Z., Wang, B., Cui, L., and Fang, J., Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor, Plant Biotechnol. J., 2016, vol. 14, p. 2045. https://doi.org/10.1111/pbi.12563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Rocchis, V., Jammer, A., Camehl, I., Franken, P., and Roitsch, T., Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression, J. Plant Physiol., 2022, vol. 276, p. 153755. https://doi.org/10.1016/j.jplph.2022.153755

    Article  CAS  PubMed  Google Scholar 

  33. Cai, Y., Yin, L., Tu, W., Deng, Z., Yan, J., Dong, W., Gao, H., Xu, J., Zhang, N., Wang, J., Zhu, L., Meng, Q., and Zhang, Y., Ectopic Expression of VvSUC27 Induces Stenospermocarpy and Sugar Accumulation in Tomato Fruits, Front. Plant Sci., 2021, vol. 12, p. 759047. https://doi.org/10.3389/fpls.2021.759047

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eshed, Y., Abu-Abied, M., Saranga, Y., and Zamir, D., Lycopersicon esculentum lines containing small overlap** introgressions from L. pennellii, Theor. Appl. Genet., 1992, vol. 83, p. 1027. https://doi.org/10.1007/BF00232968

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, grant no. 19‒16‒00016 and the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Filyushin.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filyushin, M.A., Slugina, M.A., Shchennikova, A.V. et al. Differential Expression of Sugar Uniporter Genes of the SWEET Family in the Regulation of Qualitative Fruit Traits in Tomato Species (Solanum Section Lycopersicon). Russ J Plant Physiol 70, 70 (2023). https://doi.org/10.1134/S102144372360023X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S102144372360023X

Keywords:

Navigation