Log in

The Role of SnRK1 Kinase in the Response of the Photosynthetic Machinery to Salinity Stress

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In plants, SnRK1 (Sucrose non-fermenting-Related protein Kinase 1) is one of the major activators of catabolic processes, including autophagy, during stress responses. SnRK1 generally acts as a sensor of the energy status of the cell. Photosynthesis is by far the largest energy-supplying process in green plant cells exposed to light; thus, SnRK1 might participate in its regulation. In leaves of Arabidopsis lines with different levels of the catalytic subunit of SnRK1, KIN10, quantum yields of photosystems and of non-photochemical quenching, formation of the transthylakoid proton motive force, and contents of ATP in seedlings were compared under optimal conditions and under salinity stress. We detected specific changes in the photochemical activity of the chloroplasts that were assigned to constant activation of SnRK1 in two lines with constitutive overexpression of KIN10, both under control conditions and under salinity stress. Furthermore, the inhibition of the SnRK1 activity by means of RNA interference in Arabidopsis led to a lack of response to salinity at the level of chloroplast photochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Shi, L., Wu, Y., and Sheen, J., TOR signaling in plants: conservation and innovation, Development, 2018, vol. 145, p. dev160887. https://doi.org/10.1242/dev.160887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baena-González, E., Rolland, F., Thevelein, J.M., and Sheen, J., A central integrator of transcription networks in plant stress and energy signaling, Nature, 2007, vol. 448, p. 938.

    Article  PubMed  Google Scholar 

  3. Margalha, L., Confraria, A., and Baena-González, E., SnRK1 and TOR: modulating growth–defense trade-offs in plant stress responses, J. Exp. Bot., 2019, vol. 70, p. 2261.

    Article  CAS  PubMed  Google Scholar 

  4. Nukarinen, E., Nägele, T., Pedrotti, L., Wurzinger, B., Mair, A., Landgraf, R., Börnke, F., Hanson, J., Teige, M., Baena-Gonzalez, E., Dröge-Laser, W., and Weckwerth, W., Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation, Sci Rep., 2016, vol. 6, p. 31697. https://doi.org/10.1038/srep31697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wurzinger, B., Nukarinen, E., Nägele, T., Weckwerth, W., and Teige, M., The SnRK1 kinase as central mediator of energy signaling between different organelles, Plant Physiol., 2018, vol. 176, p. 1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bakshi, A., Moin, M., Kumar, M.U., Reddy, A.B.M., Ren, M., Datla, R., Siddiq, E.A., and Kirti, P.B., Ectopic expression of Arabidopsis Target of Rapamycin (AtTOR) improves water-use efficiency and yield potential in rice, Sci Rep., 2017, vol. 7, p. 42835. https://doi.org/10.1038/srep42835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dong, P., **ong, F., Que, Y., Wang, K., Yu, L., Li, Z., and Ren, M., Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis, Front. Plant Sci., 2015, vol.6, p. 677. https://doi.org/10.3389/fpls.2015.00677

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brunkard, J.O., Xu, M., Scarpin, M.R., Chatterjee, S., Shemyakina, E.A., Goodman, H.M., and Zambryski, P., TOR dynamically regulates plant cell–cell transport, PNAS, 2020, vol. 117, p. 5049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gutierrez-Beltran, E. and Crespo, J.L., Compartmentalization, a key mechanism controlling the multitasking role of the SnRK1 complex, J. Exp. Bot., 2022, vol. 73, p. 7055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, Y., Primavesi, L.F., Jhurreea, D., Andralojc, P.J., Mitchell, R.A., Powers, S.J., Schluepmann, H., Delatte, T., Wingler, A., and Paul, M.J., Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate, Plant Physiol., 2009, vol. 149, p. 1860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yuan, S., Zhang, Z.-W., Zheng, C., Zhao, Z.-Y,; Wang, Y., Feng, L.-Y., Niu, G., Wang, C.-Q., Wang, J.-H., Feng, H., Xu, F., Bao, F., Hu, Y., Cao, Y., Ma, L., Wang, H., Kong, D.-D., **ao, W., Lin, H.-H., and He, Y., Arabidopsis Cryptochrome 1 functions in nitrogen regulation of flowering, PNAS, 2016, vol. 113, p. 7661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramon, M., Dang, T.V.T., Broeckx, T., Hulsmans, S., Crepin, N., Sheen, J., and Rolland, F., Default activation and nuclear translocation of the plant cellular energy sensor SnRK1 regulate metabolic stress responses and development, Plant Cell, 2019, vol. 31, p. 1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ruiz-Gayosso, A., Rodríguez-Sotres, R., Martínez-Barajas,E., and Coello, P., A role for the carbohydrate-binding module (CBM) in regulatory SnRK 1 subunits: the effect of maltose on SnRK 1 activity, Plant J., 2018, vol. 96, p. 163.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, H., Han, C., Wang, J.G., Chu, X., Shi, W., Yao, L., Chen, J., Hao, W., Deng, Z., Fan, M., and Bai, M.-Y., Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression, Nat. Plants, 2022, vol. 8, p. 1094.

    Article  CAS  PubMed  Google Scholar 

  15. Martínez-Barajas, E. and Coello, P., How do SnRK1 protein kinases truly work?, Plant Sci., 2020, vol. 291, p. 110330. https://doi.org/10.1016/j.plantsci.2019.110330

    Article  CAS  PubMed  Google Scholar 

  16. Zúñiga-Sánchez, E., Rodríguez-Sotres, R., Coello, P., and Martínez-Barajas, E., Effect of catalytic phosphorylation on the properties of SnRK1 from Phaseolus vulgaris embryos, Physiol. Plant., 2018, vol. 165, p. 632.

    Article  PubMed  Google Scholar 

  17. Chen, L., Su, Z.-Z., Huang, L., **a, F.-N., Qi, H., **e, L.-J., **ao, S., and Chen, Q.-F., The AMP-activated protein kinase KIN10 is involved in the regulation of autophagy in Arabidopsis, Front. Plant Sci., 2017, vol. 8, p. 1201. https://doi.org/10.3389/fpls.2017.01201

    Article  PubMed  PubMed Central  Google Scholar 

  18. Soto-Burgos, J. and Bassham, D.C., SnRK1 activates autophagy via the TOR signaling pathway in Arabidopsis thaliana, PLoS ONE, 2017, vol. 12, p. e0182591. https://doi.org/10.1371/journal.pone.0182591

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hoagland, D.R. and Arnon, D.I., The water-culture method for growing plants without soil, Circ.- Calif. Agric. Exp. Stn., 1950, vol. 347, p. 1.

    Google Scholar 

  20. Chomczynski, P. and Sacchi, N., Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal Biochem., 1987, vol. 162, p. 156.

    Article  CAS  PubMed  Google Scholar 

  21. Schmittgen, T.D. and Livak, K.J., Analyzing real-time PCR data by the comparative C(T) method, Nat. Protocols, 2008, vol. 3, p. 1101.

    Article  CAS  PubMed  Google Scholar 

  22. Dmitrieva, V.A., Domashkina, V.V., Ivanova, A.N., Sukhov, V.S., Tyutereva, E.V., and Voitsekhovskaja, O.V., Regulation of plasmodesmata in Arabidopsis leaves: ATP, NADPH and chlorophyll b levels matter, J. Exp. Bot., 2021, vol. 72, p. 5534.

    Article  CAS  PubMed  Google Scholar 

  23. Schreiber, U. and Klughammer, C., New accessory for the DUAL-PAM-100: the P515/535 module and examples of its application, PAM Application Notes, 2008, vol. 1, p. 1.

    Google Scholar 

  24. Sukhov, V., Surova, L., Morozova, E., Sherstneva, O., and Vodeneev, V., Changes in H+-ATP synthase activity, proton electrochemical gradient, and pH in pea chloroplast can be connected with variation potential, Front. Plant Sci., 2016, vol. 7, p. 1092. https://doi.org/10.3389/fpls.2016.01092

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kroemer, S. and Heldt, H.-W., On the role of mitochondrial oxidative phosphorylation in photosynthesis metabolism as studied by the effect of oligomycin on photosynthesis in protoplasts and leaves of barley (Hordeum vulgare), Plant Physiol., 1991, vol. 95, p. 1270.

    Article  CAS  Google Scholar 

  26. Lundin, A. and Thore, A., Comparison of methods for extraction of bacterial adenine nucleotides determined by firefly assay, Appl. Microbiol., 1975, vol. 30, p. 713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Surova, L., Sherstneva, O., Vodeneev, V., Katicheva, L., Semina, M., and Sukhov, V., Variation potential-induced photosynthetic and respiratory changes increase ATP content in pea leaves, J. Plant Physiol., 2016, vol. 202, p. 57.

    Article  CAS  PubMed  Google Scholar 

  28. Pan, T., Liu, M., Kreslavski, V., Zharmukhamedov, S., Nie, C, Yu, M., Kuznetsov, V., Allakhverdiev, S., and Shabala, S., Non-stomatal limitation of photosynthesis by soil salinity, Crit. Rev. Environ. Sci. Technol., 2021, vol. 51, p. 791.

    Article  CAS  Google Scholar 

  29. Zahra, N., Al Hinai, M.S., Hafeez, M.B., Rehman, A., Wahid, A., Siddique, K.H.M, and Farooq, M., Regulation of photosynthesis under salt stress and associated tolerance mechanisms, Plant Physiol. Biochem., 2022, vol. 178, p. 55.

    Article  CAS  PubMed  Google Scholar 

  30. Awlia, M., Nigro, A., Fajkus, J., Schmoeckel, S.-M., Negrão, S., Santelia, D., Trtílek, M., Tester, M., Julkowska, M.-M., and Panzarová, K., High-throughput non-destructive phenoty** of traits that contribute to salinity tolerance in Arabidopsis thaliana, Front. Plant Sci., 2016, vol. 7, p. 1414. https://doi.org/10.3389/fpls.2016.01414

    Article  PubMed  PubMed Central  Google Scholar 

  31. Takizawa, K., Cruz, J.A., Kanazawa, A., and Kramer, D.M., The thylakoid proton motive force in vivo. Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf, Biochim. Biophys. Acta, 2007, vol. 1767, p. 1233.

    Article  CAS  PubMed  Google Scholar 

  32. Yamamoto, H. and Shikanai, T., PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and acceptor sides, Plant Physiol., 2019, vol. 179, p. 588.

    Article  CAS  PubMed  Google Scholar 

  33. Spetea, C., Herdean, A., Allorent, G., Carraretto, L., Finazzi, G., and Szabo, I., An update on the regulation of photosynthesis by thylakoid ion channels and transporters in Arabidopsis, Physiol. Plant., 2017, vol. 161, p. 16.

    Article  CAS  PubMed  Google Scholar 

  34. Davis, G.A., Kanazawa, A., Schöttler, M.A., Kohzuma, K., Froehlich, J.E., Rutherford, A.W., Satoh-Cruz, M., Minhas, D., Tietz, S., Dhingra, A., and Kramer, D.M., Limitations to photosynthesis by proton motive force-induced photosystem II photodamage, Elife, 2016, vol. 5, p. e16921. https://doi.org/10.7554/eLife.16921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jamsheer, M.K., Kumar, M., and Srivastava, V., SNF1-related protein kinase 1: the many-faced signaling hub regulating developmental plasticity in plants, J. Exp. Bot., 2021, vol. 72, p. 6042.

    Article  Google Scholar 

  36. Tyutereva, E.V., Murtuzova, A.V., and Voitsekhovskaja, O.V., Autophagy and the energy status of plant cells, Russ. J. Plant Physiol., 2022, vol. 69, p. 19. https://doi.org/10.1134/S1021443722020212

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge Dr. Filip Rolland (Catholic University of Leuven, Belgium) for his generous gift of the seeds of KIN10-overexpressing lines and KIN10-RNAi knockdown lines. We also kindly thank Dr. Katharina Pawlowski (University of Stockholm, Sweden) for critical reading of this manuscript and for helpful discussions, and Ms. Valeria A. Dmitrieva (Komarov Botanical Institute RAS, Saint Petersburg, Russia) for her introduction in the analysis of electrochromic shift of pigment absorption.

Funding

This research was funded by the Russian Foundation for Basic Research, grant no. 20-34-90138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Tyutereva.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving humans and animals as subjects. The authors declare that they have no conflicts of interest.

CONFLICT OF INTEREST

The authors declare no conflict of interest. This work does not contain any studies involving humans and animals as research objects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murtuzova, A.V., Tyutereva, E.V. & Voitsekhovskaja, O.V. The Role of SnRK1 Kinase in the Response of the Photosynthetic Machinery to Salinity Stress. Russ J Plant Physiol 70, 50 (2023). https://doi.org/10.1134/S1021443722700078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722700078

Keywords:

Navigation