Log in

Influence of Cobalt, Cesium, and Combined Stresses on Physiological Parameters and Gene Expression of Two Hullless Barley Varieties

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This study investigated the impact of cobalt and cesium stresses on two hulless barley varieties through a hydroponic experiment. The plants were exposed to 200 μM cobalt chloride (Co), 200 μM cesium chloride (Cs), or with concurrent exposure to 100 μM Co + 100 μM Cs. The findings revealed that exposure to Co and Cs, either alone or in combination, caused a substantial reduction in plant growth and weight. Interestingly, the hulless barley seedlings were found to be more resilient to Cs stress, attributed to its lower Cs enrichment factor. The stressed seedlings demonstrated increased oxidative stress levels (malondialdehyde, proline, and \({\text{O}}_{2}^{{\bullet - }}\) content), but also displayed increased activity of antioxidant enzymes (POD and SOD), active oxygen scavenging capacity (GSH and GSSG content), and gene expression (GSH2, POD and SOD), reflecting a plant defense mechanism. Moreover, the expression of PAL and P5CS genes was significantly enhanced in seedlings under Co, Cs, and (Co + Cs) treatments, providing a basis for the physiological mechanism of heavy metal resistance in hulless barley. The results of this study provide valuable insights into the mechanisms of heavy metal resistance in hulless barley, indicating the plant’s potential for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Sun, Z.H., Gong, C.G., Ren, J.G., Zhang, X.Y., Wang, G.X., Liu, Y.F., Ren, Y.Q., Zhao, Y.X., Yu, Q.H., Wang, Y.F., and Hou, J.L., Toxicity of nickel and cobalt in Japanese flounder, Environ. Pollut., 2020, vol. 263, p. 114516. https://doi.org/10.1016/j.envpol.2020.114516

    Article  CAS  PubMed  Google Scholar 

  2. Kaur, R., Das, S., Bansal, S., Singh, G., Sardar, S., Dhar, H., and Ram, H., Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms, Physiol. Plant, 2021, vol. 173, p. 430. https://doi.org/10.1111/ppl.13491

    Article  CAS  PubMed  Google Scholar 

  3. Qiao, S., Tao, Y., Shan, Q., Wang, J., Chai, T., Gong, S., and Qiao, K., Physiological and gene expression responses of six annual ryegrass cultivars to cobalt, lead, and nickel stresses, Int. J. Mol. Sci., 2021, vol. 22, p. 13583. https://doi.org/10.3390/ijms222413583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao, F.J., Tang, Z., Song, J.J., Huang, X.Y., and Wang, P., Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food, Mol. Plant, 2022, vol. 15, p. 27. https://doi.org/10.1016/j.molp.2021.09.016

    Article  CAS  Google Scholar 

  5. Jogawat, A., Yadav, B., Chhaya, and Narayan, O.P., Metal transporters in organelles and their roles in heavy metal transportation and sequestration mechanisms in plants, Physiol. Plant, 2021, vol. 173, p. 259. https://doi.org/10.1111/ppl.13370

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Y.M., Yang, Q., Xu, H., Liu, Y.J., and Yang, H.L., Physiological and transcriptomic analysis provide novel insight into cobalt stress responses in willow, Sci. Rep., 2020, vol. 10, p. 2308. https://doi.org/10.1038/s41598-020-59177-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kamran, M., Danish, M., Saleem, M.H., Malik, Z., Parveen, A., Abbasi, G.H., Jamil, M., Ali, S., Afzal, S., Riaz, M., Rizwan, M., Ali, M., and Zhou, Y., Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake, Chemosphere, 2021, vol. 263, p. 128169. https://doi.org/10.1016/j.chemosphere.2020.128169

    Article  CAS  PubMed  Google Scholar 

  8. Yildiztugay, A., Ozfidan-Konakci, C., Yildiztugay, E., and Kucukoduk, M., Biochar triggers systemic tolerance against cobalt stress in wheat leaves through regulation of water status and antioxidant metabolism, J. Soil Sci. Plant Nutr., 2019, vol. 19, p. 935. https://doi.org/10.1007/s42729-019-00091-2

    Article  CAS  Google Scholar 

  9. Yigider, E., Taspinar, M.S., Aydin, M., and Agar, G., Cobalt-induced retrotransposon polymorphism and humic acid protection on maize genome, Biol. Futur., 2020, vol. 71, p. 123. https://doi.org/10.1007/s42977-020-00001-z

    Article  CAS  PubMed  Google Scholar 

  10. Hu, D., Cheng, M., Hu, K., Zhang, W., Yang, Y., and Xu, Q., Evaluation of cobalt hyperaccumulation and tolerance potential of the duckweed (Lemna minor L.), Ecotoxicol. Environ. Saf., 2019, vol. 179, p. 79. https://doi.org/10.1016/j.ecoenv.2019.04.058

    Article  CAS  PubMed  Google Scholar 

  11. Cheng, X., Chen, C., Hu, Y., and Wang, J., Response of Amaranthus tricolor to cesium stress in hydroponic system: Growth, photosynthesis and cesium accumulation, Chemosphere, 2022, vol. 307, p. 135754. https://doi.org/10.1016/j.chemosphere.2022.135754

    Article  CAS  PubMed  Google Scholar 

  12. Rai, H. and Kawabata, M., The dynamics of radio-cesium in soils and mechanism of cesium uptake into higher plants: newly elucidated mechanism of cesium uptake into rice plants, Front. Plant Sci., 2020, vol. 11, p. 528. https://doi.org/10.3389/fpls.2020.00528

    Article  PubMed  PubMed Central  Google Scholar 

  13. Adams, E., Miyazaki, T., Watanabe, S., Ohkama-Ohtsu, N., Seo, M., and Shin, R., Glutathione and its biosynthetic intermediates alleviate cesium stress in Arabidopsis, Front. Plant Sci., 2020, vol. 10, p. 1711. https://doi.org/10.3389/fpls.2019.01711

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jung, I.L., Ryu, M., Cho, S.K., Shah, P., Lee, J.H., Bae, H., Kim, I.G., and Yang, S.W., Cesium toxicity alters microRNA processing and AGO1 expressions in Arabidopsis thaliana, PLoS ONE, 2015, vol. 10, p. e0125514. https://doi.org/10.1371/journal.pone.0125514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moon, J.Y., Adams, E., Miyazaki, T., Kondoh, Y., Muroi, M., Watanabe, N., Osada, H., and Shin, R., Cesium tolerance is enhanced by a chemical which binds to BETA‑GLUCOSIDASE 23 in Arabidopsis thaliana, Sci. Rep., 2021, vol, 11, p. 21109. https://doi.org/10.1038/s41598-021-00564-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lwalaba, J.L.W., Louis, L.T., Zvobgo, G., Fu, L., Mwamba, T.M., Mundende, R.P.M., and Zhang, G., Copper alleviates cobalt toxicity in barley by antagonistic interaction of the two metals, Ecotoxicol. Environ. Saf., 2019, vol. 180, p. 234. https://doi.org/10.1016/j.ecoenv.2019.04.077

    Article  CAS  PubMed  Google Scholar 

  17. Lwalaba, J.L.W., Louis, L.T., Zvobgo, G., Richmond, M.E.A., Fu, L., Naz, S., Mwamba, M., Mundende, R.P.M., and Zhang, G., Physiological and molecular mechanisms of cobalt and copper interaction in causing phyto-toxicity to two barley genotypes differing in Co tolerance, Ecotoxicol. Environ. Saf., 2020, vol. 187, p. 109866. https://doi.org/10.1016/j.ecoenv.2019.109866

    Article  CAS  PubMed  Google Scholar 

  18. Lwalaba, J.L.W., Zvobgo, G., Mwamba, T.M., Louis, L.T., Fu, L., Kirika, B.A., Tshibangu, A.K., Adil, M.F., Sehar, S., Mukobo, R.P., and Zhang, G., High accumulation of phenolics and amino acids confers tolerance to the combined stress of cobalt and copper in barley (Hordeum vulagare), Plant Physiol. Biochem., 2020, vol. 155, p. 927. https://doi.org/10.1016/j.plaphy.2020.08.038

    Article  CAS  PubMed  Google Scholar 

  19. Zeng, X., Bai, L., Wei, Z., Yuan, H., Wang, Y., Xu, Q., Tang, Y., and Nyima, T., Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley, BMC Genomics, 2016, vol. 17, p. 386. https://doi.org/10.1186/s12864-016-2685-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, C.B., Yang, H.Z., Xu, Q.J., Wang, Y.L., Sang, Z., and Yuan, H.J., Comparative metabolomics analysis of the response to cold stress of resistant and susceptible Tibetan hulless barley (Hordeum distichon), Phytochemistry, 2020, vol. 174, p. 112346. https://doi.org/10.1016/j.phytochem.2020.112346

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y. and Liu, G.J., Uptake, accumulation and phytoextraction efficiency of cesium in Gypsophilapaniculata, Int. J. Phytoremediation, 2019, vol. 21, p. 1290. https://doi.org/10.1080/15226514.2019.1566878

    Article  CAS  PubMed  Google Scholar 

  22. Ashraf, M.A., Aziz, H., Ercisli, S., Riaz, S., Elsharkawy, M.M., Hussain, I., Alhag, S.K., Ahmed, A.E., Vodnar, D.C., Mumtaz, S., and Marc, R.A., Impact of foliar application of syringic acid on tomato (Solanum lycopersicum L.) under heavy metal stress—insights into nutrient uptake, redox homeostasis, oxidative stress, and antioxidant defense, Front. Plant Sci., 2022, vol. 13, p. 950120. https://doi.org/10.3389/fpls.2022.950120

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lai, J. and Luo, X., High-efficiency antioxidant system, chelating system and stress—responsive genes enhance tolerance to cesium ionotoxicity in Indian mustard (Brassica juncea L.), Ecotoxicol. Environ. Saf., 2019, vol. 181, p. 491. https://doi.org/10.1016/j.ecoenv.2019.06.048

    Article  CAS  PubMed  Google Scholar 

  24. Qiao, F., Zhang, L., Geng, G.G., Chen, Z., Zeng, Y., and **e, H.C., Cloning and expression of phenylalanine ammonialyase gene of Hordeumvulgare var nudum under CoCl2 stress, Journal of China Agricultural University, 2021, vol. 21, p. 18. https://doi.org/10.11841/j.issn.1007-4333.2021.03.03

    Article  Google Scholar 

  25. Chen, F., Wang, F., Wu, F.B., Mao, W.H., Zhang, G.P., and Zhou, M.X., Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance, Plant Physiol. Biochem., 2010, vol. 48, p. 663. https://doi.org/10.1016/j.plaphy.2010.05.001

    Article  CAS  PubMed  Google Scholar 

  26. Kenneth, J.K. and Thomas, D.S., Analysis of relative gene expression data using real-time quantitutive PCR and the 2–ΔΔCt method, Methods, 2001, vol. 25, p. 402. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  27. Nadarajah, K.K., ROS homeostasis in abiotic stress tolerance in plants, Int. J. Mol. Sci., 2020, vol. 21, p. 5208. https://doi.org/10.3390/ijms21155208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sabbioni, G., Funck, D., and Forlani, G., Enzymology and regulation of δ1-pyrroline-5-carboxylate synthetase 2 from rice, Front. Plant Sci., 2021, vol. 12, p. 672702. https://doi.org/10.3389/fpls.2021.672702

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang, D., Ni, R., Yang, S., Pu, Y., Qian, M., Yang, Y., and Yang, Y., Functional characterization of the Stipa purpurea P5CS gene under drought stress conditions, Int. J. Mol. Sci., 2021, vol. 22, p. 9599. https://doi.org/10.3390/ijms22179599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Funck, D., Baumgarten, L., Stift, M., von Wirén, N., and Schönemann, L. Differential contribution of P5CS isoforms to stress tolerance in Arabidopsis, Front. Plant Sci., 2020, vol. 11, p. 565134. https://doi.org/10.3389/fpls.2020.565134

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen, J.B., Yang, J.W., Zhang, Z.Y., Feng, X.F., and Wang, S.M., Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis, J. Genet., 2013, vol. 92, p. 461. https://doi.org/10.1007/s12041-013-0292-5

    Article  CAS  PubMed  Google Scholar 

  32. Sharma, H., Chawla, N., and Dhatt, A.S., Role of phenylalanine/tyrosine ammonia lyase and anthocyanidin synthase enzymes for anthocyanin biosynthesis in develo** Solanum melongena L. genotypes, Physiol. Plant, 2022, vol. 174, p. e13756. https://doi.org/10.1111/ppl.13756

    Article  CAS  PubMed  Google Scholar 

  33. Qin, Y., Li, Q., An, Q., Li, D., Huang, S., Zhao, Y., Chen, W., Zhou, J., and Liao, H., A phenylalanine ammonia lyase from Fritillaria unibracteata promotes drought tolerance by regulating lignin biosynthesis and SA signaling pathway, Int. J. Biol. Macromol., 2022, vol. 213, p. 574. https://doi.org/10.1016/j.ijbiomac.2022.05.161

    Article  CAS  PubMed  Google Scholar 

  34. Pant, S.R., Irigoyen, S., Liu, J., Bedre, R., Christensen, S.A., Schmelz, E.A., Sedbrook, J.C., Scholthof, K.B.G., and Mandadi K.K., Brachypodium phenylalanine ammonia lyase (PAL) promotes antiviral defenses against Panicum mosaic virus and its satellites, mBio, 2021, vol. 12, p. e03518. https://doi.org/10.1128/mBio.03518-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mo, F., Li, L., Zhang, C., Yang, C., Chen, G., Niu, Y., Si, J., Liu, T., Sun, X., Wang, S., Wang, D., Chen, Q., and Chen, Y., Genome-wide analysis and expression profiling of the phenylalanine ammonia-lyase gene family in Solanum tuberosum, Int. J. Mol. Sci., 2022, vol. 23, p. 6833. https://doi.org/10.3390/ijms23126833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Burger, A., Weidinger, M., Adlassnig, W., Puschenreiter, M., and Lichtscheidl, I., Response of Arabidopsis halleri to cesium and strontium in hydroponics: Extraction potential and effects on morphology and physiology, Ecotoxicol. Environ. Saf., 2019, vol. 184, p. 109625. https://doi.org/10.1016/j.ecoenv.2019.109625

    Article  CAS  PubMed  Google Scholar 

  37. Adams, E., Miyazaki, T., Saito, S., Uozumi, N., and Shin, R., Cesium inhibits plant growth primarily through reduction of potassium influx and accumulation in Arabidopsis, Plant Cell Physiol., 2018, vol. 60, p. 63. https://doi.org/10.1093/pcp/pcy188

    Article  CAS  Google Scholar 

  38. Malik, M., Chaney, R.L., Brewer, E.P., Li, Y.M., and Angle, J.S., Phytoextraction of soil cobalt using hyperaccumulator plants, Int. J. Phytorem., 2000, vol. 2, p. 319. https://doi.org/10.1080/15226510008500041

    Article  CAS  Google Scholar 

  39. Keeling, S.M., Stewart, R.B., Anderson, C.W.N., and Robinson, B.H., Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii: implications for polymetallic phytomining and phytoremediation, Int. J. Phytorem., 2003, vol. 5, p. 235. https://doi.org/10.1080/713779223

    Article  CAS  Google Scholar 

  40. Lange, B., Ent, A., Baker, A.J.M., Echevarria, G., Mahy, G., Malaisse, F., Meerts, P., Pourret, O., Verbruggen, N., and Faucon, M.P., Copper and cobalt accumulation in plants: a critical assessment of the current state of knowledge, New Phytologist, 2017, vol. 213, p. 537. https://doi.org/10.1111/nph.14175

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Department of Science and Technology of Qinghai Provincial (2021-ZJ-729). Agricultural resources and environmental protection project of the Ministry of Agriculture and Rural Areas (125A0605), Qinghai Provincial Forestry and Grassland Bureau (Qing [2022] TG04), Research Team of Stress Tolerance Mechanisms and Molecular Breeding of Plateau Plants, Qinghai Province “Kunlun Talents—Advanced Innovative and Entrepreneurial Talents” Program (Team).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Qiao.

Ethics declarations

The authors declare that they have no conflicts of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: CAT—catalase; Co—cobalt chloride; Cs—cesium chloride; Cu—copper; GSH2—glutathione synthetase; GSH—reduced glutathione; GSSG—oxidized glutathione; DW—dry weight; FW—fresh weight; H2O2—hydrogen peroxide; MDA—malondialdehyde; \({\text{O}}_{2}^{{\bullet - }}\)—superoxide anion radical; ROS—reactive oxygen species; PAL—phenylalanine ammonialyase; POD—peroxidase; P5CS—delta-1-pyrroline-5-carboxylate synthase; SOD—superoxide dismutase.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, F., Geng, G.G., **e, H.C. et al. Influence of Cobalt, Cesium, and Combined Stresses on Physiological Parameters and Gene Expression of Two Hullless Barley Varieties. Russ J Plant Physiol 70, 38 (2023). https://doi.org/10.1134/S1021443722603007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722603007

Keywords:

Navigation