Log in

Cloning of TaGAD and TaGABA-T from Winter Wheat and Expression Analysis in Arabidopsis thaliana

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Freezing injury is a common abiotic stress in alpine regions. γ-Aminobutyric acid (GABA) is a ubiquitous non-protein amino acid that plays an active role in plant stress resistance. Metabonomic results have shown that the GABA content in winter wheat (Triticum aestivum L.) “Dongnongdongmai 1” (Dn1) significantly changes with decrease in temperature. To clarify the relationship between GABA metabolism and low-temperature stress in winter wheat Dn1, we analyzed the expression of TaGAD and TaGABA-T in the tillering node under natural cooling conditions in the field. Additionally, we constructed plant overexpression vectors and introduced them into Arabidopsis thaliana to obtain stable genetic T3 plants, which were then analyzed under low-temperature stress (–10°C). The expression of TaGAD and TaGABA-T in winter wheat Dn1 gradually increased with decrease in temperature and significantly increased with a temperature decreased from 0 to –10°C. TaGAD expression was highest at –25°C, and the expression abundance of TaGABA-T was close to –10 at –25°C. Moreover, the T3 generation of A. thaliana overexpressing TaGAD and TaGABA-T showed stronger cold resistance than the wild-type. After low-temperature stress, the relative expression in the overexpression lines significantly increased and the relative conductivity and malondialdehyde content decreased compared to those in the wild-type; however, TaGAD-overexpressing lines were better than TaGABA-T-overexpressing lines. These results indicate that the GABA pathway can positively respond to low-temperature stress and that the overexpression of TaGAD is better than that of TaGABA-T for enhancing cold resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Omid, A., Harlene, H., Francisco, B.F., and Mohammad, P., Managing plant-environment-symbiont interactions to promote plant performance under low temperature stress, J. Plant Nutr., 2019, vol. 42, p. 2010. https://doi.org/10.1080/01904167.2019.1648682

    Article  CAS  Google Scholar 

  2. Zhao, L.M., Li, M., Zheng, D.F., Wang, S.Q., Gu, C.M., Na, Y.G., and **e, B.S., Advances in plant physiological changes and regulation of exogenous substances after chilling injury (in Chinese), Chin. Agric. Sci. Bull., 2015, vol. 31, p. 217. https://doi.org/10.11924/j.issn.1000-6850.2014-2411

    Article  Google Scholar 

  3. Dowgert, M.F. and Steponkus, P.L., Behavior of the plasma membrane of isolated protoplasts during a freeze-thaw cycle, Plant Physiol., 1984, vol. 75, p. 1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gusta, L.V., Wisniewski, M., Nesbitt, N.T., and Gusta, M.L., The effect of water, sugars, and proteins on the pattern of ice nucleation and propagation in acclimated and nonacclimated canola leaves, Plant Physiol., 2004, vol. 135, p. 1642. https://doi.org/10.1104/pp.103.028308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, D.J., Zeng, Y., Mu, Y.C., Yu, J., and Cang, J., Study on antifreeze protein of winter wheat Dongnongdongmai 1 in alpine regions (in Chinese), J. Triticeae Crops, 2009, vol. 29, p. 823.

    CAS  Google Scholar 

  6. Liu, Z.G., Sun, W.C., Yang, N.N., Wang, Y., He, L., Zhao, C.X., Shi, P.F., Yang, G., Li, X.C., Wu, J.Y., Fang, Y., and Zeng, X.C., Morphological and physiological characteristics of cold resistance of Winter Rapeseed (Brassica campestris L.) under low temperature stress before winter (in Chinese), Sci. Agric. Sin., 2013, vol. 46, p. 4679. https://doi.org/10.3864/j.issn.0578-1752.2013.22.005

    Article  CAS  Google Scholar 

  7. Kaye, C., and Guy, C.L., Perspectives of plant cold tolerance: physiology and molecular responses, Sci. Progress-UK, 1995, vol. 65, p. 96.

    Google Scholar 

  8. Asif, M.H., Lakhwani, D., Pathak, S., Gupta, P., Bag, S.K., Nath, P., and Trivedi, P.K., Transcriptome analysis of ripe and unripe fruit tissue of banana identifies major metabolic networks involved in fruit ripening process, BMC Plant Biol., 2014, vol. 14, p. 316. https://doi.org/10.1186/s12870-014-0316-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun, L.Y., Li, X.N., Wang, Z.S., Sun, Z.W., Zhu, X.C., Liu, S.Q., Song, F.B., Liu, F.L., and Wang, Y.J., Cold priming induced tolerance to subsequent low temperature stress is enhanced by melatonin application during recovery in wheat, Molecules, 2018, vol. 23, p. 1091. https://doi.org/10.3390/molecules23051091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li, Z., Yu J.J., Peng, Yan., and Huang, B.R., Metabolic pathways regulated by abscisic acid, salicylic acid, and γ-aminobutyric acid in association with improved drought tolerance in cree** bentgrass (Agrostis stolonifera), Physiol. Plantarum, 2016, vol. 159, p. 42. https://doi.org/10.1111/ppl.12483

    Article  CAS  Google Scholar 

  11. Wallace, W., Secor, J., and Schrader, L.E., Rapid accumulation of γ-aminobutyric acid and alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or mechanical manipulation, Plant Physiol., 1984, vol. 75, p. 170. https://doi.org/10.1104/pp.75.1.170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mekonnena, D.W., Flüggea, U.I., Frank, and Ludewig, F., Gamma-aminobutyric acid depletion affects stomata closure and drought tolerance of Arabidopsis thaliana, Plant Sci., 2016, vol. 245, p. 25. https://doi.org/10.1016/j.plantsci.2016.01.005

    Article  CAS  Google Scholar 

  13. Nayyar, H., Kaur, R., Kaur, S., and Singh, R., γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants, J. Plant Growth Regul., 2014, vol. 33, p. 408. https://doi.org/10.1007/s00344-013-9389-6

    Article  CAS  Google Scholar 

  14. Vijyakumari, K. and Puthur, J.T., γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress, Plant Growth Regul., 2016, vol. 78, p. 57. https://doi.org/10.1007/s10725-015-0074-6

    Article  CAS  Google Scholar 

  15. Hyun, T.K., Eom, S.H., Jeun, Y.C., Han, S.H., and Kim, J.S., Identification of glutamate decarboxylases as a γ-aminobutyric acid (GABA) biosynthetic enzyme in soybean, Ind. Crop Prod., 2013, vol. 49, p. 864. https://doi.org/10.1016/j.indcrop.2013.06.046

    Article  CAS  Google Scholar 

  16. Huang, Z.W., Xu, M., Lin, Z.H., Cao, X.L., and Zheng, J.G., Cloning, sequence analysis of GAD gene from indica rice and its plant expression vector construction (in Chinese), J. Guangxi Agric. Sci., 2012, vol. 43, p. 1079. https://doi.org/10.3969/j:issn.2095-1191.2012.08.1079

  17. Nisreen, A.Q., Sartawe, F.A, and Qaryouti, M.M., Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress, J. Plant Physiol., 2013, vol. 170, p. 1003. https://doi.org/10.1016/j.jplph.2013.02.010

    Article  CAS  Google Scholar 

  18. Renault, H., Amrani, A.E., Berger, A., Mouille, G., Ludivine, S.T., Bouchereau, A., and Deleu, C., γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots, Plant Cell Environ., 2013, vol. 36, p. 1009. https://doi.org/10.1111/pce.12033

    Article  CAS  PubMed  Google Scholar 

  19. Sun, S., Yang, X.G., Lin, X.M., Zhao, J., Liu, Z.J., Zhang, T.Y., and **e, W.J., Seasonal variability in potential and actual yields of winter wheat in China, Field Crop Res., 2019, vol. 240, p. 1. https://doi.org/10.1016/j.fcr.2019.05.016

    Article  Google Scholar 

  20. Yu, J., Zhang, L., Cui, H., Zhang, Y.X., Cang, J., Hao, Z.B., and Li, Z.F., Physiological and biochemical characteristics of Dongnongdongmai 1 before wintering in high-cold area (in Chinese), Acta Agron. Sin., 2008, vol. 34, p. 2019. https://doi.org/10.3724/SP.J.1006.2008.02019

    Article  CAS  Google Scholar 

  21. Bao, Y.Z., Yang, N., Meng, J., Wang, D.J., Fu, L.S., Wang, J.H., and Cang, J., Adaptability of winter wheat Dongnongdongmai 1 (Triticum aestivum L.) to overwintering in alpine regions, Plant Biology, 2021, vol. 23, p. 445. https://doi.org/10.1111/plb.13200

    Article  CAS  PubMed  Google Scholar 

  22. Wang, J., Ma, X.M., Kojima, M., Sakakibara, H., and Hou, B.K., Glucosyltransferase UGT76C1 finely modulates cytokinin responses via cytokinin N-glucosylation in Arabidopsis thaliana, Plant Physiol. Biochem., 2013, vol. 65, p. 9. https://doi.org/10.1016/j.plaphy.2013.01.012

    Article  CAS  PubMed  Google Scholar 

  23. Nakayama, D.G., Santos, C.D., Kishi, L.T., Pedezzi, R., Santiago, A.C., Soares-Costa, A., and Henrique-Silva, F., A transcriptomic survey of Migdolusfryanus (sugarcane rhizome borer) larvae, Plos One, 2017, vol. 12, e0173059. https://doi.org/10.1371/journal.pone.0173059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nour-Eldin, H.H., Hansen, B.G., Norholm, M.H.H., Jensen, J.K., and Halkier, B.A., Advancing uracil-excision based cloning towards an ideal technique for cloning PCR fragments, Nucleic Acids Res., 2006, vol. 34, e122. https://doi.org/10.1093/nar/gkl635

    Article  PubMed  PubMed Central  Google Scholar 

  25. Clough, J. and Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, The Plant J., 1998, vol. 16, p. 735. https://doi.org/10.1046/j.1365-313x.1998.00343.x

  26. Sofo, A., Dichio, B., **loyannis, C., and Masia, A., Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress, Physiol. Plantarum., 2004, vol. 121, p. 58. https://doi.org/10.1111/j.0031-9317.2004.00294.x

    Article  CAS  Google Scholar 

  27. Dionisio-Sese, M.L. and Tobita, S., Antioxidant responses of rice seedlings to salinity stress, Plant Sci., 1998, vol. 135, p. 1. https://doi.org/10.1016/s0168-9452(98)00025-9

    Article  CAS  Google Scholar 

  28. Fan, L.L., Chen, S., Liang, S.F., Sun, X., Chen, H., You, L.Z., Wu, W.B., Sun, J., and Yang, P., Assessing long-term spatial movement of wheat area across China, Agr. Syst., 2020, vol. 185, 102933. https://doi.org/10.1016/j.agsy.2020.102933

    Article  Google Scholar 

  29. Wang, X.N., Fu, L.S., Li, Z.F., Sun, Y.L., Wang, Y.B., Liu, C., Wang, J.W., and Cheng, Y.X., Morphogenesis and physiological basis of wheat varieties with different cold resistance after low temperature acclimation and freezing (in Chinese), Acta Agron. Sin., 2009, vol. 35, p. 1313. https://doi.org/10.3724/SP.J.1006.2009.01313

    Article  CAS  Google Scholar 

  30. Chi, Z.T., Dai, Y.Q., Cao, S.F., Wei, Y.Y., Shao, X.F., Huang, X.S., and Xu, F., Exogenous calcium chloride (CaCl2) promotes γ-aminobutyric acid (GABA) accumulation in fresh-cut pears, Postharvest Biol. Tec., 2021, vol. 174, 111446. https://doi.org/10.1016/j.postharvbio.2020.111446

    Article  CAS  Google Scholar 

  31. Jalil, S.U., Ahmad, I., and Ansari, M.I., Functional loss of GABA transaminase (GABA-T) expressed early leaf senescence under various stress conditions in Arabidopsis thaliana, Curr. Plant Biol., 2017, vol. 9, p. 11. https://doi.org/10.1016/j.cpb.2017.02.001

    Article  Google Scholar 

  32. Lu, Q.W., Guo, F.Y., Xu, Q.H., and Cang, J., LncRNA improves cold resistance of winter wheat by interacting with miR398, Funct. Plant Biol., 2020, vol. 47, p. 544. https://doi.org/10.1071/fp19267

    Article  CAS  PubMed  Google Scholar 

  33. Lu, Y.Z., Hu, Y.G., Snyder, R.L., and Kent, E.R., Tea leaf’s microstructure and ultrastructure response to low temperature in indicating critical damage temperature, Information Processing in Agriculture, 2019, vol. 6, p. 247. https://doi.org/10.1016/j.inpa.2018.09.004

    Article  Google Scholar 

  34. Bajji, M., Lutts, S., and Kinet, J.M., Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions, Plant Sci., 2001, vol. 160, p. 669. https://doi.org/10.1016/S0168-9452(00)00443-X

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J.J., Zhen, W., and Li, J.H., Effects of copper on leaf membrane structure and root activity of maize seedling, Bot. Stud., 2014, vol. 55, p. 47. https://doi.org/10.1186/s40529-014-0047-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fait, A., Fromm, H., Walter, D., Galili, G., and Fernie, A.R., Highway or byway: the metabolic role of the GABA shunt in plants, Trends Plant Sci., 2008, vol. 13, p. 9. https://doi.org/10.1016/j.tplants.2007.10.005

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China 31971831.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cang.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any work conducted onanimal or human participants.

CONFLICT OF INTEREST

The authors declare that they have no competing interests.

Additional information

Abbreviations: Dn1—“Dongnongdongmai 1”; GABA-T—γ-aminobutyric transaminase; GAD—glutamate decarboxylase; SSA—succinic semialdehyde; TCA—tricarboxylic acid.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Wang, S., Guan, Y. et al. Cloning of TaGAD and TaGABA-T from Winter Wheat and Expression Analysis in Arabidopsis thaliana. Russ J Plant Physiol 70, 29 (2023). https://doi.org/10.1134/S1021443722602786

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722602786

Keywords:

Navigation