Log in

On Qualitative Composition of Membrane Lipids in Plant Cells

  • LECTURES
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Literature data about qualitative composition of the classes of polar lipids constituting plant cell membranes are discussed. A diversity of classes of phospho-, glyco-, and other lipids and hydrophobic compounds lacking acyl groups are given. Fatty acid composition of polar lipids, composition of amino alcohols as components of glycosphingolipids, and oxyacids abundant in cerebrosides are considered. A key role of saturated fatty acids in the creation of an optimal physical state of membranes necessary for their normal operation is emphasized. A necessity and feasibility of construction of 3D models of biomembranes is stressed. A logic approach is proposed to a better understanding of the role of qualitative diversity of lipid composition in membrane organization. Materials showing a possibility of chemical and biological transformation of lipids in plants are cited. Several issues of membrane structure, including microdomains, remodeling of bilayer, and vesicular traffic are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Gennis, R.B., Biomembranes: Molecular Structure and Function, New York: Springer-Verlag, 1989.

    Book  Google Scholar 

  2. Dowhan, W., Bogdanov, M., and Mileykovskaya, E., Functional roles of lipids in membranes, in Biochemistry of Lipids, Lipoproteins and Membranes, Vance, D.E. and Vance, J.E., Eds., Amsterdam: Elsevier, 2008, p. 2.

    Google Scholar 

  3. Watson, H., Biological membranes, Essays Biochem., 2015, vol. 59, p. 43. https://doi.org/10.1042/BSE0590043

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sezgin, E., Levental, I., Mayor, S., and Eggeling, C., The mystery of membrane organization: composition, regulation and roles of lipid rafts, Mol. Cell Biol., 2017, vol. 18, p. 361. https://doi.org/10.1038/nrm.2017.16

    Article  CAS  Google Scholar 

  5. van Meer, G., Voelker, D.R., and Feigenson, G.W., Membrane lipids: where they are and how they behave, Mol. Cell Biol., 2008, vol. 9, p. 112. https://doi.org/10.1038/nrm2330

    Article  CAS  Google Scholar 

  6. Harwood, J.L., Plant acyl lipids: structure, distribution, and analysis, in The Biochemistry of Plants, Vol. 4: Lipids: Structure and Function, Stumpf, P.K., Ed., New York: Academic, 1980, p. 1.

  7. Ansell, G.V., Hawthorne, J.N., and Dawson, R.M.C., Form and Function of Phospholipids, Amsterdam: Elsevier, 1973, p. 494.

    Google Scholar 

  8. Hsieh, T.C.-Y., Lester, R.L., and Laine, R.A., Glycophosphoceramides from plants. Purification and characterization of a novel tetrasaccaride derived from tobacco leaf glycolipids, J. Biol. Chem., 1981, vol. 256, p. 7747.

    Article  CAS  PubMed  Google Scholar 

  9. Mudd, J.B., Phospholipid biosynthesis, in The Biochemistry of Plants, Vol. 4: Lipids: Structure and Function, Stumpf, P.K., Ed., New York: Academic, 1980, p. 250.

  10. Heinz, E., Plant glycoliplds: structure, isolation and analysis, in Advances in Lipid Methodology, Christie, W.W., Ed., Amsterdam: Elsevier, 1996, vol. 7, p. 211.

    Google Scholar 

  11. Li-Beisson, Y., Thelen, J.J., Fedosejevs, E., and Harwood, J.L., The lipid biochemistry of eukaryotic algae, Prog. Lipid Res., 2019, vol. 74, p. 31. https://doi.org/10.1016/j.plipres.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  12. Schmid, K.M. and Ohlrogge, J.B., Lipid metabolism in plants, in Biochemistry of Lipids, Lipoproteins and Membranes, Vance, D.E. and Vance, J.E., Eds., Amsterdam: Elsevier, 2008, p. 98.

    Google Scholar 

  13. Fiziologiya rastenii (Plant Physicology), Ermakov, I.P., Ed., Moscow: Akademiya, 2007.

    Google Scholar 

  14. Douce, R. and Joyard, J., Plant galactolipid, in The Biochemistry of Plants, Vol. 4: Lipids: Structure and Function, Stumpf, P.K., Ed., New York: Academic, 1980, p. 321.

  15. Christie, W.W., Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipids, Oxford: Pergamon, 1973, p. 338.

    Google Scholar 

  16. Heldt, H.-W., Plant Biochemistry, Amsterdam: Elsevier, 2005.

    Google Scholar 

  17. Kates, M., Techniques of Lipidology. Isolation, Analysis and Identification of Lipids, Amsterdam: Elsevier, 1972.

    Google Scholar 

  18. Christie, W.W., Separation of phospholipid classes by high-performance liquid chromatography, in Advances in Lipid Methodology, Christie, W.W., Ed., Amsterdam: Elsevier, 1996, vol. 3, chap. 3, p. 77.

    Book  Google Scholar 

  19. Choudhury, S.R. and Pandey, S., Phosphatidic acid binding inhibits RGS1 activity to affect specific signaling pathways in Arabidopsis, Plant J., 2017, vol. 90, p. 466.

    Article  CAS  Google Scholar 

  20. Menon, A.K. and Stevens, V.L., Phosphatidylethanolamine is the donor of the ethanolamine residue linking a glycosylphosphatidylinositol anchor to protein, J. Biol. Chem., 1992, vol. 267, p. 15277.

    Article  CAS  PubMed  Google Scholar 

  21. Chapman, K.D., Emerging physiological role for N-acylphosphatidylethanolamine metabolism in plants: signal transduction and membrane protection, Chem. Phys. Lipids, 2000, vol. 108, p. 221.

    Article  CAS  PubMed  Google Scholar 

  22. Zhukov, A.V. and Vereshchagin, A.G., Mild nonenzymatic hydrolysis of an ester bond between the orthophosphoric acid and ethanolamine residues in phosphatidylethanolamines, Chem. Phys. Lipids, 1996, vol. 82, p. 1.

    Article  CAS  Google Scholar 

  23. Unsay, J.D., Cosentino, K., Subburaj, Y., and García-Sáez, A.J., Cardiolipin effects on membrane structure and dynamics, Langmuir, 2013, vol. 29, p. 15878. https://doi.org/10.1021/la402669z

    Article  CAS  PubMed  Google Scholar 

  24. Severin, E.S., Biokhimiya (Biochemistry), Moscow: GEOTAR-Media, 2011.

    Google Scholar 

  25. Cote, G.G. and Crain, R.C., Biochemistry of phosphoinositides, Plant Physiol. Plant Mol. Biol., 1993, vol. 44, p. 333.

    Article  CAS  Google Scholar 

  26. Irvine, R.F., Letcher, A.J., Lander, D.J., et al., Phosphatidylinositol(4,5)bisphosphate and phosphatidylinositol(4)phosphate in plant tissues, Plant Physiol., 1989, vol. 89, p. 888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Furt, F., Simon-Plas, F., and Mongrand, S., Lipids of the plant plasma membrane, in The Plant Plasma Membrane. Plant Cell Monographs, Murphy, A.S., , Eds., Berlin: Springer-Verlag, 2011, p. 3.

    Google Scholar 

  28. Michell, R.H., The cellular function of phosphoinositides, in Advances in Plant Lipid Research, Sánchez, J., Eds., Seville: Univ. de Sevilla, 1998, p. 389.

    Google Scholar 

  29. Carpaneto, A., Boccaccio, A., Lagostena, L., Di Zanni, E., and Scholz-Starke, J., The signaling lipid phosphatidylinositol-3,5-bisphosphate targets plant CLC-a anion/H+ exchange activity, Embo Rep., 2017, vol. 18, p. 1100. https://doi.org/10.15252/embr.201643814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Okamoto, T., Dariania, L., Nishikoori, M., Nakazato, H., Okuyama, H., and Thompson, Jr., G.A., Studies of glycosylphosphatidylinositol-anchored proteins in Spirodela oligorrhiza, Arabidopsis thaliana, and Oryza sativa, in Advances in Plant Lipid Research, Sánchez, J., Eds. Sevilla: Univer. de Sevilla, 1998, p. 410.

    Google Scholar 

  31. Gurr, M.I. and James, A.T., Lipid Biochemistry: an Introduction, London: Chapman and Hall, 1971, p. 231.

    Google Scholar 

  32. Siegenthaler, P.A., Molecular organization of acyl lipids in photosynthetic membranes of hygher plants, in Lipids in Photosynthesis: Structure, Function and Genetics, Sigenthaler, P.A. and Murata, N., Eds., Dordrecht: Kluwer, 1998, vol. 6, p. 119.

    Google Scholar 

  33. Lynch, D.V. and Bromley, P.E., The structure and synthesis of inositolphosphorylceramides in plants, in Advances in Plant Lipid Research, Sánchez, J., , Eds., Seville: Univ. de Sevilla, 1998, p. 406.

    Google Scholar 

  34. Carter, H.E., Strobach, D.R., and Hawthorne, J.N., Biochemistry of the sphingolipids. XVIII. Complete structure of tetrasaccharide glycolipid, Biochemistry, 1969, vol. 8, p. 383.

    Article  CAS  PubMed  Google Scholar 

  35. Hsieh, T.C., Kaul, K., Laine, R.A., and Lester, R.L., Structure of a major glycophosphoceramide from tobacco leaves, PSL-1, Biochemistry, 1978, vol. 17, p. 3575.

    Article  CAS  PubMed  Google Scholar 

  36. Kaul, K. and Lester, R.L., Isolation of six novel phosphoinositol-containing sphingolipids from tobacco leaves, Biochemistry., 1978, vol. 17, p. 3569.

    Article  CAS  PubMed  Google Scholar 

  37. Du, Z., Chen, Z., and Moorse, Jr., T.S., Biosynthesis of diacylglyceroltrimethylhomoserine in Chlamydomonas reinhardtii. Compartmentalization and general characteristics, in Advances in Plant Lipid Research, Sánchez, E., Eds., Seville: Univ. de Sevilla, 1998, p. 240.

    Google Scholar 

  38. Lee, J.-W., Shin, S.-Y., Kim, H.-S., et al., Lipid turnover between membrane lipids and neutral lipids via inhibition of diacylglyceryl N,N,N-trimethylhomoserine synthesis in Chlamydomonas reinhardtii, Algal Res., 2017, vol. 27, p. 162. https://doi.org/10.1016/j.algal.2017.09.001

    Article  Google Scholar 

  39. Eichenberger, W., Identification of new plant lipids: structure of a second betaine lipid from algae, in Plant Lipid Biochemistry, Structure and Utilization, Quinn, P.J. and Harwood, J.L., Eds., London: Portland Press, 1990, p. 9.

    Google Scholar 

  40. Vogel, G. and Eichenberger, W., Biosynthesis and metabolism of betaine lipids in Ochromonas danica (Chrysophyceae), in Plant Lipid Biochemistry, Structure and Utilization, Quinn, P.J. and Harwood, J.L., Eds., London: Portland Press, 1990, p. 235.

    Google Scholar 

  41. Sidorov, R.A., Zhukov, A.V., Pchelkin, V.P., Vereshchagin, A.G., and Tsydendambaev, V.D., Content and fatty acid composition of neutral acylglycerols in Eunymus fruits, Am. Oil Chem. Soc., 2014, vol. 91, p. 805.

    Article  CAS  Google Scholar 

  42. Scholfield, C.R., Composition of soybean lecithin, J. Am. Oil Chem. Soc., 1981, vol. 58, p. 889.

    Article  CAS  Google Scholar 

  43. Vaver, V.A., Stoyanova, V.G., Geiko, N.S., Nechaev, A.P., Todoriya, K.G., and Bergel’son, L.D., Diol lipids. Acyl derivatives of 1-O-β-D-glucosylethylene glycol in ripening wheat seeds, Bioorg. Khim., 1976, vol. 2, p. 530.

    CAS  Google Scholar 

  44. Stanislas, T., Platre, M.P., Liu, M., Rambaud-Lavigne, L.E.S., Jaillais, Y., and Hamant, O., A phosphoinositide map at the shoot apical meristem in Arabidopsis thaliana, BMC Biol., 2018, vol. 60. https://doi.org/10.1186/s12915-018-0490-y

  45. Peeler, T.C., Stephenson, M.B., and Einspahr, K.J., Lipid characterization of an enriched plasma membrane fraction of Dunaliella salina grown in media of varying salinity, Plant Physiol., 1989, vol. 89, p. 970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pöyry, S. and Vattulainen, I., Role of charged lipids in membrane structures—Insight given by simulations, Biochim. Biophys. Acta, Biomembr., 2016, vol. 1858, p. 2322. https://doi.org/10.1016/j.bbamen.2016.03.016

    Article  Google Scholar 

  47. Rawyler, A., Meylan, M., and Siegenthaler, P.-A., Galactolipid synthesis in intact spinach chloroplasts and its relations with lipid asymmetry in thylacoid membranes, in Plant Lipid Biochemistry, Structure and Utilization, Quinn, P.J. and Harwood, J.L., Eds., London: Portland Press, 1990, p. 84.

    Google Scholar 

  48. Harwood, J.L., Sulfolipid, in The Biochemistry of Plants, Vol. 4: Lipids: Structure and Function, Stumpf, P.K., Ed., New York: Academic, 1980, p. 301.

  49. Joyard, J., Block, M.A., Malherbe, A., Marechal, E., and Douce, R., Origin and synthesis of galactolipid and sulfolipid head-groups, in Lipid Metabolism in Plants, Moore, T.S., Jr., Ed., Boca Raton, FL: CRC Press, 1993, p. 231.

    Google Scholar 

  50. Michaelson, L.V., Napier, J.A., Molino, D., and Faure, J.-D., Plant sphingolipids: their importance in cellular organization and adaptation, Biochem. Biophys. Acta, Mol. Cell Biol. Lipids, 2016, vol. 1861, p. 1329.

    Article  CAS  Google Scholar 

  51. Hou, C.T., Umemura, Y., Nakamura, M., and Funahashi, S., Enzymatic synthesis of steryl glucoside by a particulate preparation from immature soybean seeds, J. Biochem., 1968, vol. 63, p. 351.

    CAS  PubMed  Google Scholar 

  52. Lester, R.L. and Dickson, R.C., Sphingolipids with inositolphosphate-containing head group, Adv. Lipid Res., 1993, vol. 26, p. 253.

    CAS  PubMed  Google Scholar 

  53. Lynch, D.V., Sphingolipids, in Lipid Metabolism in Plants, Moore, T.S., Jr., Ed., Boca Raton, FL: CRC Press, 1993, p. 285.

    Google Scholar 

  54. Murata, N., Sato, N., and Takahashi, N., Very-long-chain saturated fatty acids in phosphatidylserine from higher plant tissues, Biochim. Biophys. Acta, Lipids Lipid Metab., 1984, vol. 795, p. 147.

    Article  CAS  Google Scholar 

  55. Imai, H., Ohnishi, M., Kojima, M., and Ito, S., Cerebrosides in seed-plant leaves: composition of fatty acids and sphingoid bases, in Physiology, Biochemistry and Molecular Biology of Plant Lipids, Williams J.P., Eds., Dordrecht: Kluwer, 1997, p. 224.

    Google Scholar 

  56. Sperling, P., Franke, S., Luthje, S., and Heinz, E., Are glucocerebrosides the predominant sphingolipids in plant plasma membranes? Plant Physiol. Biochem., 2005, vol. 43, p. 1031.

    Article  CAS  PubMed  Google Scholar 

  57. Imre, Z., Phytoglycolipids in the seeds of Pistacia vera L., Z. Naturforschung., 1974, vol. 29, p. 195.

    Article  CAS  Google Scholar 

  58. Fang, L., Ishikawa, T., Rennie, E.A., Murawska, G.H., Lao, J., Yan, J., Tsai, A. Y-L., Baidoo, E.E.K., Xu, J., Keasling, J.D., Demura, T., Kawai-Yamada, M., Scheller, H.V., and Mortimer, J.C., Loss of inositol phosphorylceramide sphingolipid mannosylation induced plant immune responses and reduces cellulose content in Arabidopsis, Plant Cell, 2016, vol. 28, p. 2991https://doi.org/10.1105/tpc.16.00186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morita, N., Nakazato, H., Okuyama, H., Kim, Y., and Thompson, G.A., Jr., Evidence for a glycosylinositolphospholipid-anchored alkaline phosphatase in the aquatic plan Spirodela oligorrhiza, Biochim. Biophys. Acta, Gen. Subj., 1996, vol. 21, p. 53https://doi.org/10.1016/0304-4165(95)00185-9

    Article  Google Scholar 

  60. Bohn, M., Heinz, E., and Lüthje, S., Lipid composition of plasma membranes isolated from corn (Zea mays L.) roots, Arch. Biochem. Biophys., 2001, vol. 387, p. 35.

    Article  CAS  PubMed  Google Scholar 

  61. Imai, H., Glucocerebrosides containing unsaturated hydroxy fatty acids in Arabidopsis thaliana, in Advances in Plant Lipid Research, Sánchez, E., Eds., Seville: Univ. de Sevilla, 1998, p. 38.

    Google Scholar 

  62. Zhukov, A.V., Stefanov, K.L., and Vereshchagin, A.G., The qualitative composition of individual classes of polar lipids from soybean seeds, Sov. Plant Physiol., 1987, vol. 34, pp. 518.

    CAS  Google Scholar 

  63. Privett, O.S., Dougherty, K.A., Erdahl, W.E., and Stolyhwo, A., Studies on the lipid composition of develo** soybeans, J. Am. Oil Chem. Soc., 1973, vol. 50, p. 516.

    Article  CAS  PubMed  Google Scholar 

  64. Harwood, V.L., Lipid synthesis by germinating soya bean, Phytochemistry, 1975, vol. 14, p., 1985.

  65. Singh, H. and Privett, O.S., Studies on the glycolipids and phospholipids of immature soybeans, Lipids, 1970, vol. 5, p. 692.

    Article  CAS  PubMed  Google Scholar 

  66. Rohrlich, M. and Niederauer, Th., Untersuchungen über Fett-Eiweiss-Komplexe in Cerealien. II. Über die Zusammensetsung der Protein- und der Lipoidkomponente, Fette, Seifen, Anstrichm., 1968, vol. 70, p. 58.

    Article  CAS  Google Scholar 

  67. Eklund, A., Preparation and chemical analyses of a lipoprotein concentrate from niger seed (Guisotia abyssinica Cass.), Acta Chem. Scand., 1971, vol. 25, p. 2225.

    Article  CAS  Google Scholar 

  68. Kito, M., Nakayama, Y., Kanamoto, K., and Sato, K., Occurrence of a protein-phospholipid complex in soybean oil, Agric. Biol. Chem., 1979, vol. 43, p. 2219.

    CAS  Google Scholar 

  69. Doherty, A. and Gray, J.C., Synthesis of a dicyclohexylcarbodiimide-binding proteolipids by isolated pea chloroplasts, Eur. Biochem., 1980, vol. 108, p. 131.

    Article  CAS  Google Scholar 

  70. Vereshchagin, A.G., Role of lipids in the life of plants, Materialy 66-kh Timiryazevskikh chtenii (Proc. 66th Timiryazev’s Conf.), Moscow: Nauka, 2007.

  71. Makarenko, S.L., Konenkina, T.A., Putilina, T.E., Donskaya, L.I., and Muzalevskaya, O.V., The composition of fatty acids in the endosperm and embryo lipids of Pinus sibirica and P. sylvestris seeds, Russ. J. Plant Physiol., 2008, vol. 55, p. 480.

    Article  CAS  Google Scholar 

  72. Mongrand, S., Badoc, A., Patouille, B., Lacomblez, Ch., Chavent, M., Cassagne, C., and Bessoule, J.-J., Taxonomy of gymnospermae: multivariate analyses of leaf fatty acid composition, Phytochemistry, 2001, vol. 58, p. 101.

    Article  CAS  PubMed  Google Scholar 

  73. Wolff, R.L., Pedrono, F., Pasquier, E., and Marpeau, A.M., General characteristics of Pinus spp. seed fatty acid compositions, and importance of Δ5-olefinic acids in the taxonomy and phylogeny of the genus, Lipids, 2000, vol. 35, p. 1.

    Article  CAS  PubMed  Google Scholar 

  74. Zhukov, A.V., Kuznetsova, E.I., Sidorov, R.A., Pchelkin, V.P., and Tsydendambaev, V.D., Fatty acid composition of lipids from leaves and strobila of Cycas revoluta, Russ. J. Plant Physiol., 2018, vol. 65, p. 23.

    Article  CAS  Google Scholar 

  75. Zhukov, A.V., Very long-chain fatty acids in composition of plant membrane lipids, Russ. J. Plant Physiol., 2018, vol. 65, p. 784.

    Article  CAS  Google Scholar 

  76. Zhukov, A.V., Palmitic acid and its role in the structure and functions of plant cell membranes, Russ. J. Plant Physiol., 2015, vol. 62, p. 706.

    Article  CAS  Google Scholar 

  77. Zhukov, A.V. and Vereshchagin, A.G., Composition features of individual fractions of polar lipids from soybean seeds, Sov. Plant Physiol., 1980, vol. 27, p. 390.

    CAS  Google Scholar 

  78. Sandermann, H., Regulation of membrane ensymes by lipids, Biochim. Biophys. Acta, 1978, vol. 515, p. 209.

    Article  CAS  PubMed  Google Scholar 

  79. Nobusawa, T., Okushima, Y., Nagata, N., Kojima, M., Sakakibara, H., and Umeda, M., Synthesis of very-long-chain fatty acids in the epidermis controls plant organ growth by restricting cell proliferation, PLoS Biol., 2013, vol. 11. https://doi.org/10.1371/journal.pbio.1001531

  80. Bocttcher, C. and Weiler, E.W., Cyclo-oxylipin-galactolipids in plants: occurrence and dynamics, Planta, 2007, vol. 226, p. 629.

    Article  CAS  Google Scholar 

  81. Bach, L. and Faure, J.-D., Role of very-long-chain fatty acids in plant development, when chain length does matter, C. R. Biol., 2010, vol. 333, p. 361.

    Article  CAS  PubMed  Google Scholar 

  82. Epand, R.M., Introduction to membrane lipids, in Methods in Membrane Lipids, Methods Mol. Biol. Ser. vol. 1232, Owen, D.M., Ed., New York: Springer-Verlag, 2015. https://doi.org/10.1007/978-1-4939-1762-6

  83. Higashi, S., Fujimura, Y., and Murata, N., Analysis of lipids in spinach photosystem 2, in Plant Lipid Biochemistry, Structure and Utilization, Quinn, P.J. and Harwood, J.L., Eds., London: Portland Press, 1990, p. 87.

    Google Scholar 

  84. Bailey, J.M., Specificity of sugar-phospholipid interactions, Arch. Biochem. Biophys., 1973, vol. 158, p. 586.

    Article  CAS  PubMed  Google Scholar 

  85. Zhukov, A.V. and Vereshchagin, A.G., Current techniques of extraction, purification and preliminary fractionation of polar lipids of natural origin, in Advances in Lipid Research, New York: Academic, 1981, vol. 18, p. 247.

    Google Scholar 

  86. Heilmann, I., Perera, I.Y., Stevenson, J.M., Ransom, W.D., Gross, W., and Boss, W.F., Inositol lipid signaling: what can we learn from plants? in Advances in Plant Lipid Research, Sánchez, E., Eds., Seville: Univ. de Sevilla, 1998, p. 394.

    Google Scholar 

  87. Nicolson, G.L., The Fluid—Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years, Bioch. Biophys. Acta, Biomembr., 2014, vol. 1838, p. 1451. https://doi.org/10.1016/j.bhamem2013.10.019

    Article  CAS  Google Scholar 

  88. Nickels, J.D., Smith, M.D., Alsop, R.J., Himbert, S., Yahya, A., Cordner, D., Zolnierczuk, P., Stanley, C.B., Katsaras, J, Cheng, X., and Rheinstädter, M.C., Lipid rafts: buffers of cell membrane physical properties, J. Phys Chem., 2019, vol. 123, p. 2050. https://doi.org/10.1021/acs.jpcb.8b12126

    Article  CAS  Google Scholar 

  89. Berridge, M.J., Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J., 1984, vol. 220, p. 345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schumaker, K.S. and Sze, H., Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots, J. Biol. Chem., 1987, vol. 262, p. 3944.

    Article  CAS  PubMed  Google Scholar 

  91. De Castro, L.F.P, Dopson, M., and Friedman, R., Biological membranes in extreme conditions: anionic tetraether lipid membranes and their interactions with sodium and potassium, J. Phys. Chem., 2016, vol. 120, p. 10628. https://doi.org/10.1021/acs.jpch.6b06296

    Article  Google Scholar 

  92. Loewy, A.G. and Siekevitz, P., Cell Structure and Function, New York: Holt, Rinehart and Winston, 1969.

    Google Scholar 

  93. Resh, M.D., Trafficking and signaling by fatty-acylated and prenilated proteins, Nat. Chem. Biol., 2006, vol. 2, p. 584. https://doi.org/10.1038/nchembio834

    Article  CAS  PubMed  Google Scholar 

  94. Kinoshita, T. and Fujita, M., Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling, J. Lipid Res., 2016, vol. 57, p. 6. https://doi.org/10.1194/jlr.R063313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cassey, P.J. and Seabre, M.C., Protein prenyltransferases, J. Biol. Chem., 1996, vol. 271, p. 5289. https://doi.org/10.1074/jbc.271.10.5282

    Article  Google Scholar 

  96. Novelli, G. and D’Apice, M.R., Protein farnesylation and disease, J. Inherited Metab. Dis., 2012, vol. 35, p. 917. https://doi.org/10.1007/s10545-011-9445-y

    Article  CAS  PubMed  Google Scholar 

  97. Lane, K.T. and Beese, L.S., Thematic revive series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type 1, J. Lipid Res., 2006, vol. 47, p. 681. https://doi.org/10.1194/jlr.R600002-JLR200

    Article  CAS  PubMed  Google Scholar 

  98. Murata, N. and Los, D.A., Membrane fluidity and temperature perception, Plant Physiol., 1997, vol. 115, p. 875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kutyurin, V.M. and Shutilova, N.I., Electron-donor properties of the pigment-protein-lipid complex of chloroplasts, Biokhimiya (Moscow), 1974, vol. 39, p. 102.

    CAS  Google Scholar 

  100. Yanopol’skaya, N.D. and Deborin, G.A., Ribonuclease translocation across liposome membranes of various lipid compositions, Biokhimiya (Moscow), 1988, vol. 53, p. 781.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zhukov.

Ethics declarations

FUNDING

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0106-2019-0008).

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by N. Balakshina

Abbreviations: BPG—bisphosphatidyl glycerols (cardiolipins); DAG, MAG, TAG—di-, mono-, and triacyl glycerols (di, mono-, and triglycerides); DGDG, MGDG—di- and monogalactosyl diacylglycerols; ER—endoplasmic reticulum; ESG—esterified sterol glycosides; FA, VLCFA—fatty acids and very long-chain fatty acids; GL, PhL—glyco- and phospholipids; GPI—glycosyl phosphatidyl inositol; IP3—inositol-1,4,5-triphosphate; IPC—inositol phosphoryl ceramides; N-APE—N-acyl phosphatidyl ethanolamines; PG, PI—phosphatidyl glycerols and phosphatidyl inositols; PGL, PA—phytoglycolipids and phosphatidic acids; PHG—polar head group; PL—polar lipids; PS, PC, PE—phosphatidyl serines, cholines, and ethanolamines; SQDG—sulfoquinovosyl diacylglycerols.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A.V. On Qualitative Composition of Membrane Lipids in Plant Cells. Russ J Plant Physiol 68, 367–383 (2021). https://doi.org/10.1134/S1021443721010222

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721010222

Keywords:

Navigation