Log in

Effect of Supercritical Carbon Dioxide Conditions on PVDF/PVP Microcellular Foams

  • Polymer Blends
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Supercritical carbon dioxide (ScCO2) was used as a physical foaming agent to prepare poly(vinylidene f luoride)/poly(N-vinyl pyrrolidone) (PVDF/PVP) microstructure material. The effects of foaming conditions including saturation pressure, foaming temperature and foaming time on PVDF/PVP foams morphology, thermal and electrical behavior were systematically investigated by scanning electron microscope, differential scanning calorimeter and broadband dielectric spectrometer. Small cell and low cell density were achieved at low pressure of 12 MPa, as increasing saturation pressure, the average cell size increased first, and then decreased. The competition between the cell growth and cell nucleation played an important role in average cell size, which was directly related to ScCO2 processing conditions. With increasing foaming temperature, cell size was increased and cell density was decreased, in a nearly linear manner. The variation of foaming time was considered to be closely related to the time for cells to grow. Thus, the results revealed that the average cell size enhanced with extending foaming time. The thermal properties of PVDF/PVP composites are slightly inf luenced by foaming parameters, and the dielectric constant of PVDF/PVP composite foams decreased with increasing volume expansion ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Lee, N. Johnson, J. Drelich, and Y. K. Yap, Carbon 49, 669 (2011).

    Article  CAS  Google Scholar 

  2. P. S. Brown, O. D. L. A. Atkinson, and J. P. S. Badyal, ACS Appl. Mater. Interfaces 6, 7504 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. H. Y. Araghi and M. F. Paige, Langmuir 27, 10657 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. L. Chen, M. Liu, L. Lin, T. Zhang, J. Ma, Y. Song, and L. Jiang, Soft Matter 6, 2708 (2010).

    Article  CAS  Google Scholar 

  5. Y. Cao, N. Liu, C. Fu, K. Li, L. Tao, L. Feng, and Y. Wei, ACS Appl. Mater. Interfaces 6, 2026 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. A. M. Stephan, N. G. Renganathan, S. Gopukumar, and T. Dale, Mater. Chem. Phys. 85, 6 (2004).

    Article  CAS  Google Scholar 

  7. E. Reverchon, E. S. Rappo, and S. Cardea, Polym. Eng. Sci. 46, 188 (2006).

    Article  CAS  Google Scholar 

  8. E. Reverchon and S. Cardea, J. Supercrit. Fluids 35, 140 (2005).

    Article  CAS  Google Scholar 

  9. A. R. C. Duarte, J. F. Mano, and R. L. Reis, J. Bioact. Compat. Polym. 24, 385 (2009).

    Article  CAS  Google Scholar 

  10. G. Han, S. Zhang, X. Li, N. Widjojo, and T. S. Chung, Chem. Eng. Sci. 80, 219 (2012).

    Article  CAS  Google Scholar 

  11. Y. Tao, Q. Xue, Z. Liu, M. Shan, C. Ling, T. Wu, and X. Li, ACS Appl. Mater. Interfaces 6, 8048 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. G. Wei, H. Yu, X. Quan, S. Chen, H. Zhao, and X. Fan, Environ. Sci. Technol. 48, 8062 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. D. G. Kim, H. Kang, S. Han, and J. C. Lee, ACS Appl. Mater. Interfaces 4, 5898 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. H. J. Kim, K. Choi, Y. Baek, D. Kim, J. Shim, J. Yoon, and J. Lee, ACS Appl. Mater. Interfaces 6, 2819 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. L. Huang, J. T. Arena, S. S. Manickam, X. Jiang, B. G. Willis, and J. R. McCutcheon, J. Membr. Sci. 460, 241 (2014).

    Article  CAS  Google Scholar 

  16. W. Choi, J. Choi, J. Bang, and J. H. Lee, ACS Appl. Mater. Interfaces 5, 12510 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. A. Huang, Q. Liu, N. Wang, and J. Caro, J. Mater. Chem. A 2, 8246 (2014).

    Article  CAS  Google Scholar 

  18. X.-L. Li, L.-P. Zhu, J.-H. Jiang, Z. Yi, B.-K. Zhu, and Y.-Y. Xu, Chin. J. Polym. Sci. 30, 152 (2011).

    Article  CAS  Google Scholar 

  19. J. H. Jiang, L. P. Zhu, H. T. Zhang, B. K. Zhu, and Y. Y. Xu, J. Membr. Sci. 457, 73 (2014).

    Article  CAS  Google Scholar 

  20. C. Li, Z. Du, W. Zou, H. Li, and C. Zhang, React. Funct. Polym. 88, 24 (2015).

    Article  CAS  Google Scholar 

  21. L. Chen, G. Liu, S. Liu, L. Bai, and Y. Wang, J. Biomater. Sci., Polym. Ed. 25, 1306 (2014).

    Article  CAS  Google Scholar 

  22. G. Ji, W. Zhai, D. Lin, Q. Ren, W. Zheng, and D. Jung, Ind. Eng. Chem. Res. 52, 6390 (2013).

    Article  CAS  Google Scholar 

  23. D. Rende, L. S. Schadler, and R. Ozisik, J. Chem. 2013, 1 (2013).

    Article  CAS  Google Scholar 

  24. G. Yang, J. Gao, X. Hu, C. Geng, and Q. Fu, J. Supercrit. Fluids 73, 1 (2013).

    Article  CAS  Google Scholar 

  25. F. Liu, N. A. Hashim, Y. Liu, M. R. M. Abed, and K. Li, J. Membr. Sci. 375, 1 (2011).

    Article  CAS  Google Scholar 

  26. C. H. Shih, C. C. Gryte, and L. P. Cheng, J. Appl. Polym. Sci. 96, 944 (2005).

    Article  CAS  Google Scholar 

  27. S. Cardea and E. Reverchon, Chem. Eng. Process. 50, 630 (2011).

    Article  CAS  Google Scholar 

  28. Z. Cui, N. T. Hassankiadeh, S. Y. Lee, J. M. Lee, K. T. Woo, A. Sanguineti, V. Arcella, Y. M. Lee, and E. Drioli, J. Membr. Sci. 444, 223 (2013).

    Article  CAS  Google Scholar 

  29. M. G. Buonomenna, P. Macchi, M. Davoli, and E. Drioli, Eur. Polym. J. 43, 1557 (2007).

    Article  CAS  Google Scholar 

  30. T. Cai, W. J. Yang, K. G. Neoh, and E. T. Kang, Ind. Eng. Chem. Res. 51, 15962 (2012).

    Article  CAS  Google Scholar 

  31. A. Bottino, G. Capannelli, O. Monticelli, and P. Piaggio, J. Membr. Sci. 166, 23 (2000).

    Article  CAS  Google Scholar 

  32. D. J. Lin, C. L. Chang, C. K. Lee, and L. P. Cheng, Eur. Polym. J. 42, 2407 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui **ang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ang, Y., Lin, H. Effect of Supercritical Carbon Dioxide Conditions on PVDF/PVP Microcellular Foams. Polym. Sci. Ser. A 60, 342–349 (2018). https://doi.org/10.1134/S0965545X18030161

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X18030161

Navigation