Log in

Low-Carbon Engine Fuel Components Based on Carbon Oxides (A Review)

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This review summarizes the current advances in the synthesis of polyoxyalkylene ethers and alkyl oxalates. It discusses the prospects for the application of these oxygenates as engine fuels and the methods for their structural modification to ensure effective control of their performance characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Rodionova, M.V., Poudyal, R.S., Tiwari, I., Voloshin, R.A., Zharmukhamedov, S.K., Nam, H.G., Zayadan, B.K., Bruce, B.D., Hou, H.J., and Allakhverdiev, S.I., Int. J. Hydrogen Energy, 2017, vol. 42, no. 12, pp. 8450–8461. https://doi.org/10.1016/j.ijhydene.2016.11.125

    Article  CAS  Google Scholar 

  2. Kalinina, M.A., Kulikov, L.A., Cherednichenko, K.A., Maximov, A.L., and Karakhanov, E.A., Petrol. Chem., 2021, vol. 61, no. 9, pp. 1061–1070. https://doi.org/10.1134/S0965544121090115

    Article  CAS  Google Scholar 

  3. Mardiana, S., Azhari, N.J., Ilmi, T., and Kadja, G.T., Fuel, 2021, vol. 309, p. 122119. https://doi.org/10.1016/j.fuel.2021.122119

    Article  CAS  Google Scholar 

  4. Luque, R. and Clark, J.H., ChemCatChem., 2011, vol. 3, no. 3, pp. 594–597. https://doi.org/10.1002/cctc.201000280

    Article  CAS  Google Scholar 

  5. Li, X., Luo, X., **, Y., Li, J., Zhang, H., Zhang, A., and **e, J., Renewable Sustainable Energy Rev., 2018, vol. 82, pp. 3762–3797. https://doi.org/10.1016/j.rser.2017.10.091

    Article  CAS  Google Scholar 

  6. Ma, F. and Hanna, M.A., Bioresour. Technol., 1999, vol. 70, no. 1, pp. 1–15. https://doi.org/10.1016/s0960-8524(99)00025-5

    Article  CAS  Google Scholar 

  7. Pinto, A.C., Guarieiro, L.L., Rezende, M.J., Ribeiro, N.M., Torres, E.A., Lopes, W.A., Pereira, P.A.D.P. and Andrade, J.B.D., J. Braz. Chem. Soc., 2005, vol. 16, no. 6, pp. 1313–1330. https://doi.org/10.1590/S0103-50532005000800003

    Article  CAS  Google Scholar 

  8. Balat, M. and Balat, H., Appl. Energy, 2010, vol. 87, no. 6, pp. 1815–1835. https://doi.org/10.1016/j.apenergy.2010.01.012

    Article  CAS  Google Scholar 

  9. De Oliveira, F.C. and Coelho, S.T., Renewable Sustainable Energy Rev., 2017, vol. 75, pp. 168–179. https://doi.org/10.1016/j.rser.2016.10.060

    Article  CAS  Google Scholar 

  10. McMillan, J.D., Renewable Energy, 1997, vol. 10, nos. 2–3, pp. 295–302. https://doi.org/10.1016/0960-1481(96)00081-x

    Article  CAS  Google Scholar 

  11. Aditiya, H.B., Mahlia, T.M.I., Chong, W.T., Nur, H., and Sebayang, A.H., Renewable Sustainable Energy Rev., 2016, vol. 66, pp. 631–653. https://doi.org/10.1016/j.rser.2016.07.015

    Article  CAS  Google Scholar 

  12. Sarkar, N., Ghosh, S.K., Bannerjee, S., and Aikat, K., Renewable Energy, 2012, vol. 37, no. 1, pp. 19–27. https://doi.org/10.1016/j.renene.2011.06.045

    Article  CAS  Google Scholar 

  13. Kumar, M. and Gayen, K., Appl. Energy, 2011, vol. 88, no. 6, pp. 1999–2012. https://doi.org/10.1016/j.apenergy.2010.12.055

    Article  CAS  Google Scholar 

  14. Kushwaha, D., Srivastava, N., Mishra, I., Upadhyay, S.N., and Mishra, P.K., Rev. Chem. Eng., 2019, vol. 35, no. 4, pp. 475–504. https://doi.org/10.1515/revce-2017-0041

    Article  CAS  Google Scholar 

  15. IEA Renewables 2021. https://www.iea.org/reports/renewables-2021

  16. Bulushev, D.A. and Ross, J.R.H., Catal. Today, 2011, vol. 171, no. 1, pp. 1–13. https://doi.org/10.1016/j.cattod.2011.02.005

    Article  CAS  Google Scholar 

  17. **u, S. and Shahbazi, A., Renewable Sustainable Energy Rev., 2012, vol. 16, no. 7, pp. 4406–4414. https://doi.org/10.1016/j.rser.2012.04.028

    Article  CAS  Google Scholar 

  18. Isahak, W.N.R.W., Hisham, M.W.M., Yarmo, M.A., and Hin, T.Y.Y., Renewable Sustainable Energy Rev., 2012, vol. 16, no. 8, pp. 5910–5923. https://doi.org/10.1016/j.rser.2012.05.039

    Article  CAS  Google Scholar 

  19. Palankoev, T.A., Dementiev, K.I., and Khadzhiev, S.N., Petrol. Chem., 2019, vol. 59, pp. 438–446. https://doi.org/10.1134/S096554411904011X

    Article  CAS  Google Scholar 

  20. Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., and Natarajan, M., Renewable Sustainable Energy Rev., 2012, vol. 16, no. 1, pp. 143–169. https://doi.org/10.1016/j.rser.2011.07.143

    Article  CAS  Google Scholar 

  21. Lan, T., Wang, Y., Ali, R., Liu, H., Liu, X., and He, M., Fuel Process Technol., 2022, vol. 228, p. 107156. https://doi.org/10.1016/j.fuproc.2021.107156

    Article  CAS  Google Scholar 

  22. Obergruber, M., Hönig, V., Procházka, P., Kučerová, V., Kotek, M., Bouček, J., and Mařík, J., Materials, 2021, vol. 14, no. 4, pp. 1–21. https://doi.org/10.3390/ma14040914

    Article  CAS  Google Scholar 

  23. Cornejo, A., Barrio, I., Campoy, M., Lázaro, J., and Navarrete, B., Renewable Sustainable Energy Rev., 2017, vol. 79, pp. 1400–1413. https://doi.org/10.1016/j.rser.2017.04.005

    Article  Google Scholar 

  24. Ong, H.C., Chen, W.H., Farooq, A., Gan, Y.Y., Lee, K.T., and Ashokkumar, V., Renewable Sustainable Energy Rev., 2019, vol. 113, p. 109266. https://doi.org/10.1016/j.rser.2019.109266

    Article  CAS  Google Scholar 

  25. Geller, D.P. and Goodrum, J.W., Fuel, 2004, vol. 83, nos. 17–18, pp. 2351–2356. https://doi.org/10.1016/j.fuel.2004.06.004

    Article  CAS  Google Scholar 

  26. Doll, K.M., Moser, B.R., and Erhan, S.Z., Energy Fuel., 2007, vol. 21, no. 5, pp. 3044–3048. https://doi.org/10.1021/ef700213z

    Article  CAS  Google Scholar 

  27. Musyoka, S.K., Khalil, A.S.G., Ookawara, S.A., and Elwardany, A.E., Fuel, 2023, vol. 341, p. 127656. https://doi.org/10.1016/j.fuel.2023.127656

    Article  CAS  Google Scholar 

  28. Szori, M., Giri, B.R., Wang, Z., Dawood, A.E., Viskolcz, B., and Farooq, A., Sustain. Energy Fuel., 2018, vol. 2, no. 10, pp. 2171–2178. https://doi.org/10.1039/c8se00207j

    Article  CAS  Google Scholar 

  29. Dahmen, M. and Marquardt, W., Energy Fuel., 2016, vol. 30, no. 2, pp. 1109–1134. https://doi.org/10.1021/ACS.ENERGYFUELS.5B02674

    Article  CAS  Google Scholar 

  30. Fagan, P.J., Korovessi, E., Manzer, L.E., Mehta, R., and Thomas, S.M., Patent JP 2003080571A1, 2002.

  31. Manzer, L., Patent US 2005075405A1, 2004.

  32. Jungbluth, H., Gottlieb, K., and Wessendorf, R., Patent DE 1994021753A1, 1994.

  33. Christensen, E., Williams, A., Paul, S., Burton, S., and McCormick, R.L., Energy Fuel., 2011, vol. 25, no. 11, pp. 5422–5428. https://doi.org/10.1021/EF201229J

    Article  CAS  Google Scholar 

  34. Rae, A. and Hodgson,W., Patent GB 2003002696A1, 2001.

  35. Groves, A.P., Morley, C., Smith, J., and Stevenson, P.A., Patent WO 2005044960A1, 2004.

  36. Haan, J.P., Louis, J.J.J., and Stevenson, P.A., Patent WO 2007012585 A1, 2007.

  37. Joshi, H., Moser, B.R., Toler, J., Smith, W.F., and Walker, T., Biomass Bioenerg., 2011, vol. 35, no. 7, pp. 3262–3266. https://doi.org/10.1016/j.biombioe.2011.04.020

    Article  CAS  Google Scholar 

  38. Peters, R., Energy, 2017, vol. 138, pp. 1221–1246. https://doi.org/10.1016/j.energy.2017.07.050

    Article  CAS  Google Scholar 

  39. **a, C., Song, H., Chen, J., and Li, Z., Patent US 20110313202 A1, 2011.

  40. **a, C., Song, H., Chen, J., Li., Z., **, F., and Kang, M., Patent US 9169186 B2, 2012.

  41. Qian, M., Liauw, M.A., Emig, G., Appl. Catal. A, 2003, vol. 238, no. 2, pp. 211–222. https://doi.org/10.1016/S0926-860X(02)00340-X

    Article  CAS  Google Scholar 

  42. Meunier, N., Chauvy, R., Mouhoubi, S., Thomas, D., and De Weireld, G., Renewable Energy, 2020, vol. 146, pp. 1192–1203. https://doi.org/10.1016/j.renene.2019.07.010

    Article  CAS  Google Scholar 

  43. Simon Araya, S., Liso, V., Cui, X., Li, N., Zhu, J., Sahlin, S.L., Jensen, S.H., Nielsen, M.P., and Kær, S.K., Energies, 2020, vol. 13, no. 3, p. 596. https://doi.org/10.3390/EN13030596

    Article  Google Scholar 

  44. Guo, W., Yin, Y., Pi, N., Liu, F., Tu, S., and Ye, L., Energy Fuel., 2020, vol. 34, no. 4, pp. 4213–4220. https://doi.org/10.1021/acs.energyfuels.9b04536

    Article  CAS  Google Scholar 

  45. Riemenschneider, W. and Tanifuji, M., Oxalic Acid, Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: WILEY-VCH Verlag GmbH & Co. KgaA, 2000, pp. 1–14. https://doi.org/10.1002/14356007.a18_247

  46. Lautenschütz, L., Oestreich, D., Seidenspinner, P., Arnold, U., Dinjus, E., and Sauer, J., Fuel, 2016, vol. 173, pp. 129–137. https://doi.org/10.1016/j.fuel.2016.01.060

    Article  CAS  Google Scholar 

  47. Qi, J., Hu, Y., Niu, J., Ma, W., Jiang, S., Wang, Y., Zhang, X., and Jiang, Y., Fuel, 2018, vol. 234, pp. 135–141. https://doi.org/10.1016/J.FUEL.2018.07.007

    Article  CAS  Google Scholar 

  48. Han, D.Y., Cao, Z.B., Shi, W.W., Deng, X.D., and Yang, T.Y., Energy Sources, Part A, 2016, vol. 38, no. 18, pp. 2687–2692. https://doi.org/10.1080/15567036.2015.1110646

    Article  CAS  Google Scholar 

  49. Bartholet, D.L., Arellano-Treviño, M.A., Chan, F.L., Lucas, S., Zhu, J., John, P.C.S., Alleman, T.L., McEnally, C.S., Pfefferle, L.D., Ruddy, D.A., and Windom, B., Fuel, 2021, vol. 295. https://doi.org/10.1016/j.fuel.2021.120509

  50. Kang, M.R., Song, H.Y., **, F.X., and Chen, J., J. Fuel Chem. Technol., 2017, vol. 45, no. 7, pp. 837–845. https://doi.org/10.1016/s1872-5813(17)30040-3

    Article  CAS  Google Scholar 

  51. Liu, Q., Zhang, X., Ma, B., and Lin, Y., J. Chem. Thermodyn., 2017, vol. 113, pp. 151–161. https://doi.org/10.1016/j.jct.2017.06.002

    Article  CAS  Google Scholar 

  52. Liu, J., Wang, L., Wang, P., Sun, P., Liu, H., Meng, Z., Zhang, L., and Ma, H., Fuel, 2022, vol. 318, p. 123582. https://doi.org/10.1016/j.fuel.2022.123582

    Article  CAS  Google Scholar 

  53. https://kpon.ru/assets/manager/lab/GOST_32511-2013_Toplivo_dizelnoe_tu.pdf

  54. Deutsch, D., Oestreich, D., Lautenschütz, L., Haltenort, P., Arnold, U., and Sauer, J., Chem. Ing. Tech., 2017, vol. 89, no. 4, pp. 486–489. https://doi.org/10.1002/cite.201600158

    Article  CAS  Google Scholar 

  55. Omari, A., Heuser, B., Pischinger, S., and Rüdinger, C., Appl. Energy, 2019, vol. 239, pp. 1242–1249. https://doi.org/10.1016/j.apenergy.2019.02.035

    Article  CAS  Google Scholar 

  56. Omari, A., Heuser, B., and Pischinger, S., Fuel, 2017, vol. 209, pp. 232–237. https://doi.org/10.1016/j.fuel.2017.07.107

    Article  CAS  Google Scholar 

  57. Badia, J.H., Ramírez, E., Bringué, R., Cunill, F., and Delgado, J., Energy Fuel., 2021, vol. 35, no. 14, pp. 10949–10997. https://doi.org/10.1021/acs.energyfuels.1c00912

    Article  CAS  Google Scholar 

  58. Joseph, S., Sathishkumar, R., Mahapatra, S., and Desiraju, G.R., Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater., 2011, vol. 67, no. 6, pp. 525–534. https://doi.org/10.1107/S0108768111037487

    Article  CAS  Google Scholar 

  59. **amen University, Patent CN 107118814A, 2017.

  60. Serdari, A., Lois, E., and Stournas, S., Ind. Eng. Chem. Res., 1999, vol. 38, no. 9, pp. 3543–3548. https://doi.org/10.1021/ie9900115

    Article  CAS  Google Scholar 

  61. Bu, L., Ciesielski, P.N., Robichaud, D.J., Kim, S., McCormick, R.L., Foust, T.D., and Nimlos, M.R., J. Phys. Chem. A, 2017, vol. 121, no. 29, pp. 5475–5486. https://doi.org/10.1021/acs.jpca.7b04000

    Article  CAS  PubMed  Google Scholar 

  62. NIST Chemistry WebBook. https://webbook.nist.gov/chemistry/

  63. PubChem. https://pubchem.ncbi.nlm.nih.gov/

  64. CompTox Chemicals Dashboard. https://comptox.epa.gov/dashboard/

  65. Baranowski, C.J., Bahmanpour, A.M., and Kröcher, O., Appl. Catal. B, 2017, vol. 217, pp. 407–420. https://doi.org/10.1016/j.apcatb.2017.06.007

    Article  CAS  Google Scholar 

  66. Li, G., Ning, J., Xu, C., Qiu, Q., Ma, H., and Chen, L., Comput. Theor. Chem., 2021, vol. 1200, p. 113248. https://doi.org/10.1016/j.comptc.2021.113248

    Article  CAS  Google Scholar 

  67. Zhao, Y., Xu, Z., Chen, H., Fu, Y., and Shen, J., J. Energy Chem., 2013, vol. 22, no. 6, pp. 833–836. https://doi.org/10.1016/S2095-4956(14)60261-8

    Article  CAS  Google Scholar 

  68. Liu, H., Bai, Z., Liu, Y., Guo, X., and Fu, Y., Int. J. Chem. Eng. Appl., 2017, vol. 8, no. 2, pp. 82–86. https://doi.org/10.18178/ijcea.2017.8.2.634

    Article  CAS  Google Scholar 

  69. Detcheberry, M., Destrac, P., Meyer, X.M., and Condoret, J.S., Fluid Phase Equilib., 2015, vol. 392, pp. 84–94. https://doi.org/10.1016/j.fluid.2015.02.011

    Article  CAS  Google Scholar 

  70. Albert, M., Coto García, B., Kuhnert, C., Peschla, R., and Maurer, G., AIChE J., 2000, vol. 46, no. 8, pp. 1676–1687. https://doi.org/10.1002/aic.690460818

    Article  CAS  Google Scholar 

  71. Diep, B.T. and Wainwright, M.S., J. Chem. Eng. Data, 1987, vol. 32, no. 3, pp. 330–333. https://doi.org/10.1021/je00049a015

    Article  CAS  Google Scholar 

  72. Burger, J., Ströfer, E., and Hasse, H., Ind. Eng. Chem. Res., 2012, vol. 51, no. 39, pp. 12751–12761. https://doi.org/10.1021/ie301490q

    Article  CAS  Google Scholar 

  73. Drunsel, J.O., Renner, M., and Hasse, H., Chem. Eng. Res. Des., 2012, vol. 90, no. 5, pp. 696–703. https://doi.org/10.1016/j.cherd.2011.09.014

    Article  CAS  Google Scholar 

  74. Oestreich, D., Lautenschütz, L., Arnold, U., and Sauer, J., Chem. Eng. Sci., 2017, vol. 163, pp. 92–104. https://doi.org/10.1016/j.ces.2016.12.037

    Article  CAS  Google Scholar 

  75. Schmitz, N., Burger, J., and Hasse, H., Ind. Eng. Chem. Res., 2015, vol. 54, no. 50, pp. 12553–12560. https://doi.org/10.1021/acs.iecr.5b04046

    Article  CAS  Google Scholar 

  76. Wu, Q., Wang, M., Hao, Y., Li, H., Zhao, Y., and Jiao, Q., Ind. Eng. Chem. Res., 2014, vol. 53, pp. 16254–16260. https://doi.org/10.1021/ie502409t

    Article  CAS  Google Scholar 

  77. Qi, J., Hu, Y., Jiang, S., Ma, W., Yang, Z., and Wang, Y., Fuel, 2019, vol. 245, pp. 521–527. https://doi.org/10.1016/j.fuel.2019.02.093

    Article  CAS  Google Scholar 

  78. Cao, C., Liu, G., **n, F., Lei, Q., Qin, X., Yin, Y., Chen, H., and Ullah, A., Chem. Eng. Sci., 2022, vol. 248, pp. 117136. https://doi.org/10.1016/j.ces.2021.117136

    Article  CAS  Google Scholar 

  79. Maiwald, M., Fischer, H.H., Ott, M., Peschla, R., Kuhnert, C., Kreiter, C.G., Maurer, G., and Hasse, H., Ind. Eng. Chem. Res., 2003, vol. 42, no. 2, pp. 259–266. https://doi.org/10.1021/IE0203072

    Article  CAS  Google Scholar 

  80. Voggenreiter, J. and Burger, J., Ind. Eng. Chem. Res., 2021, vol. 60, no. 6, pp. 2418–2429. https://doi.org/10.1021/ACS.IECR.0C05780

    Article  CAS  Google Scholar 

  81. Klokic, S., Hochegger, M., Schober, S., and Mittelbach, M., Renewable Energy, 2020, vol. 147, pp. 2151–2159. https://doi.org/10.1016/J.RENENE.2019.10.004

    Article  CAS  Google Scholar 

  82. Wang, R., Wu, Z., Qin, Z., Chen, C., Zhu, H., Wu, J., Chen, G., Fan, W., and Wang, J., Catal. Sci. Technol., 2016, vol. 6, no. 4, pp. 993–997. https://doi.org/10.1039/c5cy01854d

    Article  CAS  Google Scholar 

  83. Song, H., Kang, M., **, F., Wang, G., Li, Z., and Chen, J., Chin. J. Catal., 2017, vol. 38, no. 5, pp. 853–861. https://doi.org/10.1016/S1872-2067(17)62816-X

    Article  CAS  Google Scholar 

  84. Zhang, C., Zhang, T., Zhang, J., Zhang, J., and Li, R., Chin. J. Chem. Eng., 2021, vol. 32, pp. 175–182. https://doi.org/10.1016/j.cjche.2020.09.016

    Article  CAS  Google Scholar 

  85. Sheldon, R.A., Arends, I., and Hanefeld, U., Green Chemistry and Catalysis, Weinheim: WILEY-VCH Verlag GmbH & Co. KgaA, 2007, pp. 434.

  86. Wang, L., Wu, W., Chen, T., and Chen, Q., Chem. Eng. Commun., 2013, vol. 201, no. 5, pp. 37–41. https://doi.org/10.1080/00986445.2013.778835

    Article  CAS  Google Scholar 

  87. Li, X., Cao, J., Nawaz, M.A., and Liu, D., Fuel, 2021, vol. 289, pp. 119867. https://doi.org/10.1016/j.fuel.2020.119867

    Article  CAS  Google Scholar 

  88. Fang, X., Chen, J., Ye, L., Lin, H., and Yuan, Y., Sci. China: Chem., 2015, vol. 58, no. 1, pp. 131–138. https://doi.org/10.1007/s11426-014-5257-x

    Article  CAS  Google Scholar 

  89. Wang, L., Wu, W.-T., Chen, T., Chen, Q., and He, M.-Y., Chem. Eng. Commun., 2014, vol. 201, no. 5, pp. 709–717. https://doi.org/10.1080/00986445.2013.778835

    Article  CAS  Google Scholar 

  90. Zhang, J., Tang, B., Fang, D., and Liu, D., Asian J. Chem., 2014, vol. 26, no. 19, pp. 6469–6473.

    Article  CAS  Google Scholar 

  91. Lautenschütz, L., Oestreich, D., Haltenort, P., Arnold, U., Dinjus, E., and Sauer, J., Fuel Process Technol., 2017, vol. 165, pp. 27–33. https://doi.org/10.1016/j.fuproc.2017.05.005

    Article  CAS  Google Scholar 

  92. Haltenort, P., Hackbarth, K., Oestreich, D., Lautenschütz, L., Arnold, U., and Sauer, J., Catal. Commun., 2018, vol. 109, no. 2017, pp. 80–84. https://doi.org/10.1016/j.catcom.2018.02.013

    Article  CAS  Google Scholar 

  93. Wang, B., Yan, X., Zhang, X., Zhang, H., and Li, F., Appl. Catal. B, 2020, vol. 266, p. 118645. https://doi.org/10.1016/j.apcatb.2020.118645

    Article  CAS  Google Scholar 

  94. Wu, J., Zhu, H., Wu, Z., Qin, Z., Yan, L., Du, B., Fan, W., and Wang, J., Green Chem., 2015, vol. 17, no. 4, pp. 2353–2357. https://doi.org/10.1039/c4gc02510e

    Article  CAS  Google Scholar 

  95. Qi, Z.H.A.O., Hui, W.A.N.G., Qin, Z.F., Wu, Z.W., Wu, J.B., Fan, W.B., and Wang, J.G., J. Fuel Chem. Technol. (Bei**g), 2011, vol. 39, no. 12, pp. 918–923. https://doi.org/10.1016/s1872-5813(12)60003-6

    Article  Google Scholar 

  96. Bedenko, S.P., Dement’ev, K.I., Tret’yakov, V.F., and Maksimov, A.L., Petrol. Chem., 2020, vol. 60, no. 7, pp. 723–730. https://doi.org/10.1134/S0965544120070026

    Article  CAS  Google Scholar 

  97. Bedenko, S.P., Kozhevnikov, A.A., Dement’ev, K.I., Tret’yakov, V.F., and Maksimov, A.L., Catal. Commun., 2020, vol. 138, p. 105965. https://doi.org/10.1016/j.catcom.2020.105965

    Article  CAS  Google Scholar 

  98. Bedenko, S.P., Dement’ev, K.I., and Tret’yakov, V.F., Catalysts, 2021, vol. 11, no. 10, p. 1181. https://doi.org/10.3390/catal11101181

    Article  CAS  Google Scholar 

  99. Labidi, S., Ben Amar, M., Passarello, J.P., Le Neindre, B., and Kanaev, A., Ind. Eng. Chem. Res. 2017, vol. 56, no. 6, pp. 1394–1403. https://doi.org/10.1021/acs.iecr.6b03448

  100. Li, X., Cao, J., Nawaz, M.A., and Liu, D., Fuel, 2021, vol. 289, p. 119867. https://doi.org/10.1016/j.fuel.2020.119867

    Article  CAS  Google Scholar 

  101. Li, X., Li, S., Wang, X., Nawaz, M.A., and Liu, D., Chin. J. Chem. Eng., 2022, vol. 46, pp. 161–172. https://doi.org/10.1016/j.cjche.2021.04.022

    Article  CAS  Google Scholar 

  102. Wang, W., Gao, X., Yang, Q., Wang, X., Song, F., Zhang, Q., Han, Y., and Tan, Y., Fuel, 2018, vol. 238, pp. 289–297. https://doi.org/10.1016/j.fuel.2018.10.098

    Article  CAS  Google Scholar 

  103. Bahmanpour, A.M., Hoadley, A., and Tanksale, A., Green Chem., 2015, vol. 17, no. 6, pp. 3500–3507. https://doi.org/10.1039/c5gc00599j

    Article  CAS  Google Scholar 

  104. Sun, R., Delidovich, I., and Palkovits, R., ACS Catal., 2019, vol. 9, no. 2, pp. 1298–1318. https://doi.org/10.1021/acscatal.8b04441

    Article  CAS  Google Scholar 

  105. Gierlich, C.H., Beydoun, K., Klankermayer, J., and Palkovits, R., Chem. Ing. Tech., 2020, vol. 92, nos. 1–2, pp. 116–124. https://doi.org/10.1002/cite.201900187

    Article  CAS  Google Scholar 

  106. Lucas, S.P., Chan, F.L., Fioroni, G.M., Foust, T.D., Gilbert, A., Luecke, J., McEnally, C.S., Serdoncillo, J.J.A., Zdanowicz, A.J., and Zhu, J., Windom, B., Energy Fuel., 2022, vol. 36, no. 17, pp. 10213–10225. https://doi.org/10.1021/acs.energyfuels.2c01414

    Article  CAS  Google Scholar 

  107. Drexler, M., Haltenort, P., Zevaco, T.A., Arnold, U., and Sauer, J., Sustainable Energy Fuel., 2021, vol. 5, pp. 4311–4326. https://doi.org/10.1039/d1se00631b

    Article  CAS  Google Scholar 

  108. Arellano-Trevino, M.A., Bartholet, D., To, A.T., Bartling, A.W., Baddour, F.G., Alleman, T.L., Christensen, E.D., Fioroni, G.M., Hays, C., Luecke, J., and Zhu, J., ACS Sustainable Chem. Eng., 2021, vol. 9, no. 18, pp. 6266–6273. https://doi.org/10.1021/acssuschemeng.0c09216

    Article  CAS  Google Scholar 

  109. Olson, A.L., Tunér, M., and Verhelst, S., Heliyon, 2023, vol. 9, no. 1, pp. e13041. https://doi.org/10.1016/J.HELIYON.2023.E13041

  110. Trifoi, A.R., Agachi, P.Ş., and Pap, T., Renewable Sustainable Energy Rev., 2016, vol. 62, pp. 804–814. https://doi.org/10.1016/j.rser.2016.05.013

    Article  CAS  Google Scholar 

  111. Nord, K.E. and Haupt, D., Environ. Sci. Technol., 2005, vol. 39, no. 16, pp. 6260–6265. https://doi.org/10.1021/es048085h

    Article  CAS  PubMed  Google Scholar 

  112. Khusnutdinov, I.Sh., Akhmetzyanov, A.M., Gavrilov, V.I., Zabbarov, R.R., and Khanova, A.G., Khim. Khim. Tekhnol., 2009, vol. 52, no. 11, pp. 119–122.

    CAS  Google Scholar 

  113. Jaubert, S. and Maurer, G., J. Chem. Thermodyn., 2014, vol. 68, pp. 332–342. https://doi.org/10.1016/j.jct.2013.03.022

    Article  CAS  Google Scholar 

  114. Song, J., Cheenkachorn, K., Wang, J., Perez, J., Boehman, A.L., Young, P.J., and Waller, F.J., Energy Fuel., 2002, vol. 16, no. 2, pp. 294–301. https://doi.org/10.1021/EF010167T

    Article  CAS  Google Scholar 

  115. Jan, V., Lju, C., Van, V., and Li, L., Patent RF 2532348 S2, 2011.

  116. Lui, Zh., Sun, F., and Kuaj, C., Patent RF 2554887 S2, 2011.

  117. Fenton, D.M., Steinwand, P.J., Patent US 3393136A, 1965.

  118. Swenson, K.E., Zemach, D., Nanjundiah, C., and Kariv-Miller, E., J. Org. Chem., 1983, vol. 48, no. 10, pp. 1779–1780. https://doi.org/10.1021/jo00158a042

    Article  Google Scholar 

  119. Gao, X., Zhu, Y.P., and Luo, Z.H., Chem. Eng. Sci., 2011, vol. 66, no. 23, pp. 6028–6038. https://doi.org/10.1016/j.ces.2011.08.031

    Article  CAS  Google Scholar 

  120. Ji, Y., Liu, G., Li, W., and **ao, W., J. Mol. Catal. A: Chem., 2009, vol. 314, nos. 1–2, pp. 63–70. https://doi.org/10.1016/j.molcata.2009.08.018

    Article  CAS  Google Scholar 

  121. Yu, Q., Sun, H., Sun, H., Li, L., Zhu, X., Ren, S., Guo, Q., and Shen, B., Microporous Mesoporous Mater., 2019, vol. 273, pp. 297–306. https://doi.org/10.1016/j.micromeso.2018.08.016

    Article  CAS  Google Scholar 

  122. Wang, S., Zhang, X., Zhao, Y., Ge, Y., Lv, J., Wang, B., and Ma, X., Front. Chem. Sci. Eng., 2012, vol. 6, no. 3, pp. 259–269. https://doi.org/10.1007/S11705-012-1212-6

    Article  CAS  Google Scholar 

  123. Zhao, T.J., Chen, D., Dai, Y.C., Yuan, W.K., and Holmen, A., Ind. Eng. Chem. Res., 2004, vol. 43, no. 16, pp. 4595–4601. https://doi.org/10.1021/ie030728z

    Article  CAS  Google Scholar 

  124. Yang, L., Pan, Z., Wang, D., Wang, S., Wang, X., Ma, H., Liu, H., Wang, C., Qu, W., and Tian, Z., ACS Appl. Mater. Interfaces, 2021, vol. 13, no. 24, pp. 28064–28071. https://doi.org/10.1021/ACSAMI.1C04051

    Article  CAS  PubMed  Google Scholar 

  125. Feng, X., Ling, L., Cao, Y., Zhang, R., Fan, M., and Wang, B., J. Phys. Chem. C, 2018, vol. 122, no. 2, pp. 1169–1179. https://doi.org/10.1021/ACS.JPCC.7B09272

    Article  CAS  Google Scholar 

  126. Bowden, E., Org. Synth., 1930, vol. 10, pp. 78. https://doi.org/10.15227/ORGSYN.010.0078

    Article  Google Scholar 

  127. Lyadov, V.A. and Denislamova, E.S., Khim. Ekol. Urban., 2019, vol. 2, pp. 335–337.

    Google Scholar 

  128. Suyarembitova, D.Z., Kalistratova, A.V., Oshvhepkov, M.S., and Kovalenko, L.V., Usp. Khim. Khim. Tekhnol., 2016, vol. 30, no. 11, pp. 85–87.

    Google Scholar 

  129. Ji, G., Ding, J., and Zhong, Q., Can. J. Chem. Eng., 2020, vol. 98, no. 11, pp. 2321–2329. https://doi.org/10.1002/cjce.23775

    Article  CAS  Google Scholar 

  130. Malins, K., Fuel Process Technol., 2018, vol. 179, pp. 302–312. https://doi.org/10.1016/J.FUPROC.2018.07.017

    Article  CAS  Google Scholar 

  131. Sun, C., Qiu, F., Yang, D., and Ye, B., Fuel Process Technol., 2014, vol. 126, pp. 383–391. https://doi.org/10.1016/J.FUPROC.2014.05.021

    Article  CAS  Google Scholar 

  132. Platonov, A.Y., Evdokimov, A.N., Kurzin, A.V., and Maiyorova, H.D., J. Chem. Eng. Data, 2002, vol. 47, no. 5, pp. 1175–1176. https://doi.org/10.1021/JE020012V

    Article  CAS  Google Scholar 

  133. Ma, X., Gong, J., Wang, S., Gao, N., Wang, D., Yang, X., and He, F., Catal. Commun., 2004, vol. 5, no. 3, pp. 101–106. https://doi.org/10.1016/j.catcom.2003.12.001

    Article  CAS  Google Scholar 

  134. Biradar, A.V., Umbarkar, S.B., and Dongare, M.K., Appl. Catal. A: General, 2005, vol. 285, nos. 1–2, pp. 190–195. https://doi.org/10.1016/j.apcata.2005.02.028

    Article  CAS  Google Scholar 

  135. Mamedov, M.K. and Piraliev, A.G., Russ. J. Gen. Chem., 2007, vol. 77, no. 9, pp. 1589–1592. https://doi.org/10.1134/S1070363207090149

    Article  CAS  Google Scholar 

  136. Shi, Y., Wang, S., and Ma, X., Chem. Eng. J., 2011, vol. 166, no. 2, pp. 744–750. https://doi.org/10.1016/j.cej.2010.11.081

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out within the State Program of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Kuznetsov.

Ethics declarations

K.I. Dement’ev, a co-author, is a deputy editor-in-chief at the Neftekhimiya (Petroleum Chemistry) Journal. The other co-authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palankoev, T.A., Kuznetsov, P.S., Bedenko, S.P. et al. Low-Carbon Engine Fuel Components Based on Carbon Oxides (A Review). Pet. Chem. 64, 331–345 (2024). https://doi.org/10.1134/S096554412402018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554412402018X

Keywords:

Navigation