Log in

Dehydrogenation of Cumene to α-Methylstyrene over Tungsten-Containing Porous Ceramic Converters

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

It was shown that the method for the incorporation of a catalytic tungsten component into a porous ceramic converter has a major effect on the activity and selectivity of cumene-to-AMS dehydrogenation. Specifically, the activity of a surface-modified tungsten-containing converter exceeded by more than 2.5 orders of magnitude the activity of a converter with tungsten incorporated by thermochemical sintering of the initial blend. It was further found that the performance of hydrocarbon dehydrogenation in converter channels nearly doubles that of the process occurring over a granular catalyst with an equivalent composition. It was also demonstrated that the process performance can be enhanced by removing extra-pure hydrogen from the reaction system through a palladium-containing membrane. Cumene dehydrogenation in catalytic converters was identified as a zero-order reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Zuo, C. and Su, Q., Molecules, 2023, vol. 28, no. 8, p. 3594. https://doi.org/10.3390/molecules28083594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nawaz, Z., Rev. Chem, Eng., 2015, vol. 31, no. 5, pp. 413–436. https://doi.org/10.1515/revce-2015-0012

    Article  CAS  Google Scholar 

  3. Sanfilippo, D., Cattech., 2000, vol. 4, pp. 56–73. https://doi.org/10.1023/A:1011947328263

    Article  CAS  Google Scholar 

  4. Bricker, J.C., Topics Catal., 2012, vol. 55, nos. 19–20, pp. 1309–1314. https://doi.org/10.1007/s11244-012-9912-1

    Article  CAS  Google Scholar 

  5. Vora, B.V., Topics Catal., 2012, vol. 55, no. 19–20, pp. 1297–1308. https://doi.org/10.1007/s11244-012-9917-9

    Article  CAS  Google Scholar 

  6. Julbe, A., Farrusseng, D., and Guizard, C., J. Membran. Sci., 2001, vol. 181, no. 1, pp. 3–20. https://doi.org/10.1016/S0376-7388(00)00375-6

    Article  CAS  Google Scholar 

  7. Nettleship, I., Key Eng. Mater., 1996, vol. 122, pp. 305–324. https://doi.org/10.4028/www.scientific.net/KEM.122-124.305

    Article  Google Scholar 

  8. Ohji, T. and Fukushima, M., Int. Mater. Rev., 2012, vol. 57, no. 2, pp. 115–131. https://doi.org/10.1179/1743280411Y.0000000006

    Article  CAS  Google Scholar 

  9. Borovinskaya, I.P., Manukyan, K., and Mukasyan, A.S., Ceram. Modern Technol., 2019, vol. 1, no. 1, pp. 1–49. https://doi.org/10.29272/cmt.2018.0012

    Article  Google Scholar 

  10. Ceramic Catalysts: Materials, Synthesis, and Applications, Kurian, M., Thankachan, S., and Nair, S.S., Eds., Elsevier, 2023.

  11. Zha, H.-k., Yi, W.-q., Li, J.-w., Shi, J., Li, J.-c., Tang, W.-m., Lin, Y.-h., Zhu, K.-s., Cheng, J.-g., and Liu, G.-c., Silicon, 2023, pp. 1–23. https://doi.org/10.1007/s12633-023-02525-0

  12. Rzig, R., Troudi, F., Ben Khedher, N., Boukholda, I., Aziz Alshammari, F., and Khalaf Alshammari, N., ACS Omega, 2022, vol. 7, no. 15, pp. 13280–13289. https://doi.org/10.1021/acsomega.2c00907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lauriat, G. and Ghafir, R., Forced Convective Heat Transfer in Porous Media, Vafai, K., Ed., in Handbook of Porous Media, New York: Dekker, 2000, pp. 201–267.

  14. Sun, T., Huang, X., Qu, Y., Wang, F., and Chen, Y., Appl. Thermal Eng., 2020, vol. 173, p. 115211. https://doi.org/10.1016/j.applthermaleng.2020.115211

    Article  Google Scholar 

  15. Shelepova, E.V., Vedyagin,, A.A., Mishakov, I.V., and Noskov, A.S., Catal. Sustainable Energ., 2014, vol. 2, no. 1, pp. 1–9. https://doi.org/10.2478/cse-2014-0001

    Article  Google Scholar 

  16. Gobina, E., Hou, K., and Hughes, R., Chem. Eng. Sci., 1995, vol. 50, no. 14, pp. 2311–2319. https://doi.org/10.1016/0009-2509(95)00059-E

    Article  CAS  Google Scholar 

  17. Basov, N.L., Ermilova, M.M., Orekhova, N.V., and Yaroslavtsev, A.B., Russ. Chem. Rev., 2013, vol. 82, no. 4, pp. 352–368. https://doi.org/10.1070/RC2013v082n04ABEH004324

    Article  CAS  ADS  Google Scholar 

  18. Abdalla, B.K. and Elnashaie, S.S.E.H., J. Membrane Sci., 1993, vol. 85, no. 3, pp. 229–239. https://doi.org/10.1016/0376-7388(93)85277-4

    Article  CAS  Google Scholar 

  19. Fedotov, A.S., Tsodikov, M.V., Yaroslavtsev, A.B., Processes, 2022, vol. 10, no. 10, p. 2060. https://doi.org/10.3390/pr10102060

    Article  CAS  Google Scholar 

  20. Fedotov, A.S., Uvarov, V.I., Tsodikov, M.V., Paul, S., Simon, P., Marinova, M., and Dumeignil, F., Chem. Eng. Proc.-Process Intensificat., 2021, vol. 160, p. 108265. https://doi.org/10.1016/j.cep.2020.108265

    Article  CAS  Google Scholar 

  21. Fedotov, A.S., Grachev, D.Yu., Bagdatov, R.A., Tsodikov, M.V., Uvarov, V.I., Kapustin, R.D., Paul, S., and Dumeignil, F., Petrol. Chem., 2023, vol. 63, pp. 453–462. https://doi.org/10.1134/S0965544123030143

    Article  CAS  Google Scholar 

  22. Chistyakov, A.V., Zharova, P.A., Tsodikov, M.V., Nikolaev, S.A., Krotova, I.N., and Ezzhelenko, D.I., Kinet Catal., 2016, vol. 57, pp. 803–811. https://doi.org/10.1134/S0023158416060045]

    Article  CAS  Google Scholar 

  23. Ryashentseva, M.A. and Minchaev, Kh.M., Renii i ego soedineniya v geterogennom katalize (Rhenium and Its Compounds in Heterogeneous Catalysis), Moscow: Nauka, 1983.

  24. Ryashentseva, M.A., Russ. Chem. Rev., 1998, vol. 67, no. 2, pp. 157–177. https://doi.org/10.1070/RC1998v067n02ABEH000390

    Article  ADS  Google Scholar 

  25. Ryashentseva, M.A., Vestn. MITKhT, 2007, vol. 2, no. 2, p. 12.

    Google Scholar 

  26. Lai, C., Wang, J., Zhou, F., Liu, W., and Miao, N., J. Alloys Compd., 2018, vol. 735, pp. 2685–2693. https://doi.org/10.1016/j.jallcom.2017.11.064

    Article  CAS  Google Scholar 

  27. Romanyuk, A., Steiner, R., Oelhafen, P., Biskupek, J., Kaiser, U., Mathys, D., and Spassov, V., J. Phys. Chem., 2008, vol. 112, no. 30, pp. 11090–11092. https://doi.org/10.1021/jp803844d

    Article  CAS  Google Scholar 

  28. Wilken, T.R., Morcom, W.R., and Wert, C.A., Metallurg. Transact., 1976, vol. 7, no. 4, pp. 589–597. https://doi.org/10.1007/BF02698592

    Article  ADS  Google Scholar 

Download references

Funding

This study was funded by the Russian Science Foundation (project no. 23-13-00085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fedotov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotov, A.S., Grachev, D.Y., Kapustin, R.D. et al. Dehydrogenation of Cumene to α-Methylstyrene over Tungsten-Containing Porous Ceramic Converters. Pet. Chem. 63, 1110–1118 (2023). https://doi.org/10.1134/S0965544123060294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123060294

Keywords:

Navigation