Log in

8-Allyl-1,3-benzoxazines as Hydrogen Sulfide Corrosion Inhibitors and Biocides in Crude Oil Extraction

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The inhibitor and bactericidal properties of a series of allyl-substituted 1,3-benzoxazines and their water-soluble derivatives in hydrogen sulfide saturated water–salt–hydrocarbon systems were studied. The inhibitor properties of the compounds with respect to St.3 steel (St3Gsp, GOST (State Standard) 380-2005) strongly depend on the number of methylene groups in the substituents bonded to the nitrogen atom in the 1,3-oxazine ring. The bactericidal activity toward the growth of sulfate-reducing bacteria (SRB) also strongly depends on the structure of the compounds. With an increase in the number of methylene groups in the molecule, the protective properties of the compounds increase, whereas the bactericidal properties decrease. Compounds with an aromatic substituent at the nitrogen atom of the 1,3-oxazine ring exhibit higher inhibiting (maximal degree of protection ~97%) and bactericidal (maximal degree of SRB growth suppression ~100%) power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.

Similar content being viewed by others

REFERENCES

  1. Аrya, A.K., Jain, R., and Bisht, S., Tailored Funct. Mater., 2022, vol. 15, pp. 355–369. https://doi.org/10.1007/978-981-19-2572-6_27

    Article  Google Scholar 

  2. Al-Azzawi, W.K., Salih, S.M., Hamood, A.F., AlAzzawi, R.K., Kzar, M.H., Jawoosh, H.N., Shakier, L.M., Al-Amiery, A., Kadhum, A.A.H., Isahak, W.N.R.W., and Takriff, M.S., Int. J. Corros. Scale Inhib., 2022, vol. 11, no. 3, pp. 1063–1082. https://www.researchgate.net/publication/363117177

    CAS  Google Scholar 

  3. Chapagain, A., Acharya, D., Das, A.K., Chhetri, K., Oli, H.B., and Yadav, A.P., Electrochem., 2022, vol. 3, pp. 211–224. https://doi.org/10.3390/electrochem3020013

    Article  CAS  Google Scholar 

  4. Mehdiyeva, G.M., Bairamov, M.R., Hosseinzadeh, Sh.B., and Hasanova, G.M., Turk. J. Chem., 2020, vol. 44, no. 3, pp. 670–686. https://doi.org/10.3906/kim-2001-23

    Article  CAS  Google Scholar 

  5. Mekhtieva, G.M., Magerramov, A.M., Bairamov, M.R., Agaeva, M.A., Khoseinzade, Sh.B., and Gasanova, G.M., Petrol. Chem., 2015, vol. 55, no. 3, pp. 247–251. https://doi.org/10.1134/S0965544115030081

    Article  CAS  Google Scholar 

  6. Altunina, L.K. and Kuvshinov, V.A., Materialy XVIII Mendeleevskogo s”ezda (Proc. XVIII Mendeleev Congr.), Moscow, 2007, vol. 4, p. 496.

  7. Nazina, T.N., Sokolova, D.Sh., Babich, T.L., Semenova, E.M., Ershov, A.P., Bidzhiev, S.Kh., Borzenkov, I.A., Poltaraus, A.B., Khisametdinov, M.R., and Tourova, T.P., Microbiology, 2017, vol. 86, no. 6, pp. 773–785. https://doi.org/10.1134/S0026261717060121

    Article  CAS  Google Scholar 

  8. Levashova, V.I. and Pirogov, N.V., Petrol. Chem., 2008, vol. 48, no. 6, pp. 484–489. https://doi.org/10.1134/S0965544108060145

    Article  Google Scholar 

  9. Kudryavtsev, D.B., Pantleeva, A.R., Yurina, A.V., Voloshina, A.D., Lukashenko, S.S., Zobov, V.V., Khodyrev, Yu.P., Mirgorodskaya, A.B., and Zakharova, L.Ya., Petrol. Chem., 2011, vol. 51, no. 4, pp. 293–298. https://doi.org/10.1134/S096554411103008X

    Article  CAS  Google Scholar 

  10. Nafikova, E.V., Levashova, V.I., and Dekhtyar’, T.F., Petrol. Chem., 2011, vol. 51, no. 5, pp. 391–394. https://doi.org/10.1134/S0965544111050112

    Article  CAS  Google Scholar 

  11. Veliev, M.G., Chalabieva, A.Z., Vezirova, I.A., Shatirova, M.I., and Gadzhieva, M.I., Petrol. Chem., 2010, vol. 50, no. 5, pp. 484–488. https://doi.org/10.1134/S0965544110060137

    Article  Google Scholar 

  12. Didukh, A.G., Nefedov, A.N., Bondar’, G.P., Eleusizova, E.D., Abdukhalykov, D.B., Ivashov, N.A., and Shokataeva, D.Kh., Ingib. Korroz., 2017, vol. 36, no. 1, pp. 32–36.

    Google Scholar 

  13. Ismailov, O.D., SOCAR Proc., 2019, no. 4, pp. 61–66. https://doi.org/10.5510/OGP20190400412

    Article  Google Scholar 

  14. Mehdiyeva, G.M., Russ. J. Appl. Chem., 2021, vol. 95, no. 2, pp. 277–283. https://doi.org/10.1134/S1070427222020070

    Article  Google Scholar 

  15. Burke, W.J., J. Am. Chem. Soc., 1949, vol. 71, pp. 609–611.

    Article  CAS  Google Scholar 

  16. Burke, W.J., Bishop, J.L., Glennie, E.L.M., and Bauer, W.N., J. Org. Chem., 1965, vol. 30, pp. 3423–3427. https://doi.org/10.1021/jo01021a037

    Article  CAS  Google Scholar 

  17. Magerramov, A.M., Bairamov, M.R., Khoseinzade, Sh.B., Agaeva, M.A., Mekhtieva, G.M., and Aliyeva, S.G., Petrol. Chem., 2013, vol. 53, no. 6, pp. 423–425. https://doi.org/10.1134/S0965544113060121

    Article  CAS  Google Scholar 

  18. Document RD 39-0147-103-350-89: Procedure for controlling microbiological contamination of oilfield waters and evaluation of the protective and bactericidal action of reagents, Ufa: All-Russia Research Inst. for Collection, Preparation, and Transportation of Crude Oil and Petroleum Products, 1989.

  19. Mirgorodskaya, A.B., Lukashenko, S.S., Yatskevich, E.I., Kulik, N.V., Voloshina, A.D., Kudryavtsev, D.B., Panteleeva, A.R., Zobov, V.V., Zakharova, L.Ya., and Konovalov, A.I., Fizikokhim. Poverkhn. Zashch. Met., 2014, vol. 50, no. 4, pp. 434–439. https://doi.org/10.7868/S0044185614040111

    Article  Google Scholar 

  20. Mustafin, A.G., Khusnitdinov, R.N., Fattakhov, A.Kh., Gimadieva, A.R., and Abdrakhmanov, I.B., Patent RU 2543018 С1, 2015, Byull. Izobret., 2015, no. 6.

  21. Dubinskaya, E.V., Vigdorovich, V.I., and Tsygankova, L.E., Vestn. Tomsk. Gos. Univ., 2013, vol. 18, no. 5, pp. 2814–2822.

    Google Scholar 

  22. Azimov, N.A., Akhmedova, A.V., Kazieva, R.K., and Ibrahimova, G.B., SOCAR Proc., 2015, no. 1, pp. 40–45. https://doi.org/10.5510/OGP20150100232

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Science Development Foundation under the President of the Republic of Azerbaijan (project no. EIF/MQM/Elm-Tehsil-1-2016-1(26)-71/01/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Mehdiyeva.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehdiyeva, G.M. 8-Allyl-1,3-benzoxazines as Hydrogen Sulfide Corrosion Inhibitors and Biocides in Crude Oil Extraction. Pet. Chem. 63, 394–402 (2023). https://doi.org/10.1134/S0965544123030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544123030039

Keywords:

Navigation