Log in

Fabrication of Hollow Fiber Membrane from Polyarylate–Polyarylate Block Copolymer for Air Separation

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A process has been developed for spinning asymmetric hollow fiber membranes from a polyarylate–polyarylate block copolymer having a separation factor for pure gases in the oxygen–nitrogen pair of α(O2/N2) = 6.3 and an oxygen permeance coefficient of 2.4 Barrer. The effect of the polymer molecular weight, the composition of the dope solution, and the spinning parameters on the gas transport properties of the hollow fiber membrane and its geometry has been studied. The use of a polymer with a molecular weight of 67 kDa, as well as the introduction of surfactants into the dope solution, has made it possible to prepare samples of defect-free membranes with an oxygen permeance of 120 L(STP)/(m2 h bar) and a separation factor of α(O2/N2) = 6.5, which correspond to the selective layer thickness of 60 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Baker, Membrane Technology and Applications (Wiley, Chichester, 2012), 3rd Ed.

    Book  Google Scholar 

  2. P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res. 48, 4638 (2009).

    Article  CAS  Google Scholar 

  3. S. P. Nunes and K.-V. Peinemann, Membrane Technology in the Chemical Industry (Wiley–VCH, Weinheim, 2001).

    Book  Google Scholar 

  4. R. S. Murali, T. Sankarshana, and S. Sridhar, Sep. Purif. Rev. 42, 130 (2013).

    Article  CAS  Google Scholar 

  5. M. V. Ivanov, I. P. Storozhuk, G. A. Dibrov, et al., Khim. Prom-st. Segodnya, No. 12, 43 (2016).

    Google Scholar 

  6. D. Wang, W. K. Teo, and K. Li, J. Membr. Sci. 204, 247 (2002).

    Article  CAS  Google Scholar 

  7. M. V. Ivanov, G. A. Dibrov, A. V. Loyko, et al., Theor. Found. Chem. Eng. 50, 316 (2016).

    Article  CAS  Google Scholar 

  8. H. Kawakami, M. Mikawa, and S. Nagaoka, J. Membr. Sci. 137, 241 (1997).

    Article  CAS  Google Scholar 

  9. M. Iqbal and Z. Man, J. Membr. Sci. 318, 167 (2008).

    Article  CAS  Google Scholar 

  10. T. Hu, G. Dong, H. Li, and V. Chen, J. Membr. Sci. 468, 107 (2014).

    Article  CAS  Google Scholar 

  11. G. Bakeri, T. Matsuura, A. F. Ismail, and D. Rana, Sep. Purif. Technol. 89, 160 (2012).

    Article  CAS  Google Scholar 

  12. S. R. Rafikov, V. P. Budtov, and Yu. B. Monakov, Introduction into Physical Chemistry of Polymer Solutions (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  13. G. Dibrov, V. Volkov, V. Vasilevsky, et al., J. Membr. Sci. 470, 439 (2014).

    Article  CAS  Google Scholar 

  14. N. Peng, N. Widjojo, P. Sukitpaneenit, et al., Prog. Polym. Sci. 37, 1401 (2012).

    Article  CAS  Google Scholar 

  15. A. A. Tager, Polymer Physics and Chemistry (Nauchnyi Mir, Moscow, 2007), 4th Ed. [in Russian].

    Google Scholar 

  16. C. Y. Feng, K. C. Khulbe, T. Matsuura, and A. F. Ismail, Sep. Purif. Technol. 111, 43 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Ivanov.

Additional information

Original Russian Text © M.V. Ivanov, I.P. Storozhuk, G.A. Dibrov, M.P. Semyashkin, N.G. Pavlukovich, G.G. Kagramanov, 2018, published in Membrany i Membrannye Tekhnologii, 2018, Vol. 8, No. 2, pp. 85–92.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, M.V., Storozhuk, I.P., Dibrov, G.A. et al. Fabrication of Hollow Fiber Membrane from Polyarylate–Polyarylate Block Copolymer for Air Separation. Pet. Chem. 58, 289–295 (2018). https://doi.org/10.1134/S0965544118040047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118040047

Keywords

Navigation