Log in

A Uniformly Convergent Numerical Method for Singularly Perturbed Semilinear Integro-Differential Equations with Two Integral Boundary Conditions

  • ORDINARY DIFFERENTIAL EQUATION
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

This paper purposes to present a new discrete scheme for the singularly perturbed semilinear Volterra–Fredholm integro-differential equation including two integral boundary conditions. Initially, some analytical properties of the solution are given. Then, using the composite numerical integration formulas and implicit difference rules, the finite difference scheme is established on a uniform mesh. Error approximations for the approximate solution and stability bounds are investigated in the discrete maximum norm. Finally, a numerical example is solved to show \(\varepsilon \)-uniform convergence of the suggested difference scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. P. Farrell, A. Hegarty, J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Robust Computational Techniques for Boundary Layers (Chapman and Hall/CRC, Boca Raton, 2000).

    Book  Google Scholar 

  2. M. K. Kadalbajoo, and V. Gupta, “A brief survey on numerical methods for solving singularly perturbed problems,” Appl. Math. Comput. 217 (8), 3641–3716 (2010).

    MathSciNet  Google Scholar 

  3. J. J. H. Miller, E. O’Riordan, and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions (World Scientific, Singapore, 1996).

    Book  Google Scholar 

  4. A. H. Nayfeh, Introduction to Perturbation Techniques (Wiley, New York, 2011).

    Google Scholar 

  5. R. E. O’Malley, Singular Perturbation Methods for Ordinary Differential Equations (Springer, New York, 1991).

    Book  Google Scholar 

  6. H.-G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations (Springer-Verlag, Berlin, 1996).

    Book  Google Scholar 

  7. E. P. Doolan, J. J. H. Miller, and W. H. A. Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers (Boole, Dublin, 1980).

    Google Scholar 

  8. E. A. Hussain and N. S. M. Al-Saif, “Design feed forward neural network for solving two dimension singularly perturbed integro-differential and integral equation,” Int. J. Appl. Math. Res. 2 (1), 134–139 (2013).

    Google Scholar 

  9. C. Zhongdi and X. Lifeng, “A parameter robust numerical method for a singularly perturbed Volterra equation in security technologies,” Matrix 1, 20–22 (2006).

    Google Scholar 

  10. A. M. Il’in, R. Z. Khasminskii, and G. Yin, “Asymptotic expansions of solutions of integrodifferential equations for transition densities of singularly perturbed switching diffusions: Rapid switchings,” J. Math. Anal. 238 (2), 516–539 (1999).

    Article  MathSciNet  Google Scholar 

  11. V. B. Smirnova, N. V. Utina, and A. V. Proskurnikov, “On periodic solutions of singularly perturbed integro-differential Volterra equations with periodic nonlinearities,” IFAC-Papers OnLine 49 (14), 160–165 (2016).

    Article  Google Scholar 

  12. M. K. Dauylbayev and B. Uaissov, “Integral boundary-value problem with initial jumps for a singularly perturbed system of integrodifferential equations,” Chaos Solitons Fractals 141, 110328 (2020).

  13. R. M. Colombo, M. Garavello, F. Marcellini, and E. Rossi, “An age and space structured SIR model describing the Covid-19 pandemic,” J. Math. Ind. 10, 22 (2020).

    Article  MathSciNet  Google Scholar 

  14. A. A. Archibasov, A. Korobeinikov, and V. A. Sobolev, “Asymptotic expansions of solutions in a singularly perturbed model of virus evolution,” Comput. Math. Math. Phys. 55 (2), 240–250 (2015).

    Article  MathSciNet  Google Scholar 

  15. J. E. Busse, S. Cuadrado, and A. Marciniak-Czochra, “Local asymptotic stability of a system of integro-differential equations describing clonal evolution of a self-renewing cell population under mutation,” J. Math. Biol. 84, 10 (2022).

    Article  MathSciNet  Google Scholar 

  16. N. Rohaninasab, K. Maleknejad, and R. Ezzati, “Numerical solution of high-order Volterra–Fredholm integro-differential equations by using Legendre collocation method,” Appl. Math. Comput. 328, 171–188 (2018).

    MathSciNet  Google Scholar 

  17. S. H. Behiry and S. I. Mohamed, “Solving high-order nonlinear Volterra–Fredholm integrodifferential equations by differential transform method,” Nat. Sci. 4 (8), 581–587 (2012).

    Google Scholar 

  18. F. Araghi and S. S. Behzadi, “Numerical solution of nonlinear Volterra–Fredholm integro-differential equations using Homotopy analysis method,” J. Appl. Math. Comput. 37 (1), 1–12 (2011).

    Article  MathSciNet  Google Scholar 

  19. A. M. Abed, M. F. Younis, and A. A. Hamoud, “Numerical solutions of nonlinear Volterra–Fredholm integro-differential equations by using MADM and VIM,” Nonlinear Funct. Anal. Appl. 27 (1), 189–201 (2022).

    Google Scholar 

  20. A. M. Wazwaz, Linear and Nonlinear Integral Equations (Springer, Berlin, 2011).

    Book  Google Scholar 

  21. F. Farshadmoghadam, H. Deilami Azodi, and M. R. Yaghouti, “An improved radial basis functions method for the high-order Volterra–Fredholm integro-differential equations,” Math. Sci. 16, 445–458 (2022).

    Article  MathSciNet  Google Scholar 

  22. E. Hesameddini and M. Shahbazi, “Solving multipoint problems with linear Volterra–Fredholm integro-differential equations of the neutral type using Bernstein polynomials method,” Appl. Numer. Math. 136, 122–138 (2019).

    Article  MathSciNet  Google Scholar 

  23. A. Shahsavaran, “Numerical solution of linear Volterra and Fredholm integro differential equations using Haar wavelets,” Math. Sci. J. 6, 85–96 (2010).

    Google Scholar 

  24. M. Fathy, M. El-Gamel, and M. S. El-Azab, “Legendre–Galerkin method for the linear Fredholm integro-differential equations,” Appl. Math. Comput. 243, 789–800 (2014).

    MathSciNet  Google Scholar 

  25. M. Riahi Beni, “Boubaker matrix polynomials and nonlinear Volterra–Fredholm integrodifferential equations,” Iran. J. Sci. Technol. Trans. A: Sci. 46 (2), 547–561 (2022).

    Article  MathSciNet  Google Scholar 

  26. S. Segni, M. Ghiat, and H. Guebbai, “New approximation method for Volterra nonlinear integro-differential equation,” Asian-Eur. J. Math. 12 (01), 1950016 (2019).

  27. F. Nicoud and T. Schönfeld, “Integral boundary conditions for unsteady biomedical CFD applications,” Int. J. Numer. Methods Fluids 40 (3–4), 457–465 (2002).

    Article  Google Scholar 

  28. P. Shi, “Weak solution to an evolution problem with a nonlocal constraint,” SIAM J. Math. Anal. 24 (1), 46–58 (1993).

    Article  MathSciNet  Google Scholar 

  29. B. Cahlon, D. M. Kulkarni, and P. Shi, “Stepwise stability for the heat equation with a nonlocal constraint,” SIAM J. Numer. Anal. 32 (2), 571–593 (1995).

    Article  MathSciNet  Google Scholar 

  30. F. Geng and M. Cui, “New method based on the HPM and RKHSM for solving forced Duffing equations with integral boundary conditions,” J. Comput. Appl. Math. 233 (2), 165–172 (2009).

    Article  MathSciNet  Google Scholar 

  31. M. Ahsan, M. Bohner, A. Ullah, A. A. Khan, and S. Ahmad, “A Haar wavelet multiresolution collocation method for singularly perturbed differential equations with integral boundary conditions,” Math. Comput. Simul. 204, 166–180 (2023).

    Article  Google Scholar 

  32. M. Cakir, “A numerical study on the difference solution of singularly perturbed semilinear problem with integral boundary condition,” Math. Model. Anal. 21 (5), 644–658 (2016).

    Article  MathSciNet  Google Scholar 

  33. M. Cakir and D. Arslan, “A new numerical approach for a singularly perturbed problem with two integral boundary conditions,” Comput. Appl. Math. 40 (6), 1–17 (2021).

    Article  MathSciNet  Google Scholar 

  34. L. B. Liu, G. Long, and Z. Cen, “A robust adaptive grid method for a nonlinear singularly perturbed differential equation with integral boundary condition,” Numer. Algorithms 83 (2), 719–739 (2020).

    Article  MathSciNet  Google Scholar 

  35. E. Sekar and A. Tamilselvan, “Singularly perturbed delay differential equations of convection–diffusion type with integral boundary condition,” J. Appl. Math. Comput. 59 (1), 701–722 (2019).

    Article  MathSciNet  Google Scholar 

  36. N. Adzic, “Spectral approximation and nonlocal boundary value problems,” Novi Sad J. Math. 30 (3), 1–10 (2000).

    MathSciNet  Google Scholar 

  37. M. Benchohra and S. K. Ntouyas, “Existence of solutions of nonlinear differential equations with nonlocal conditions,” J. Math. Anal. Appl. 252, 477–483 (2000).

    Article  MathSciNet  Google Scholar 

  38. R. Chegis, “The numerical solution of singularly perturbed nonlocal problem,” Liet. Mat. Rink. 28, 144–152 (1988).

    Google Scholar 

  39. D. Herceg, “On the numerical solution of a singularly perturbed nonlocal problem,” Univ. Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. 20 (2), 1–10 (1990).

    MathSciNet  Google Scholar 

  40. A. Boucherif, “Second-order boundary value problems with integral boundary conditions,” Nonlinear Anal. Theory Methods Appl. 70 (1), 364–371 (2009).

    Article  MathSciNet  Google Scholar 

  41. A. A. Hamoud, M. B. Issa, and K. P. Ghadle, “Existence and uniqueness results for nonlinear Volterra–Fredholm integro-differential equations,” Nonlinear Funct. Anal. Appl. 23 (4), 797–805 (2018).

    Google Scholar 

  42. A. A. Hamoud and K. P. Ghadle, “Existence and uniqueness of the solution for Volterra–Fredholm integro-differential equations,” J. Sib. Fed. Univ. Math. Phys. 11 (6), 692–701 (2018). https://doi.org/10.17516/1997-1397-2018-11-6-692-70

    Article  MathSciNet  Google Scholar 

  43. B. C. Iragi and J. B. Munyakazi, “New parameter-uniform discretisations of singularly perturbed Volterra integro-differential equations,” Appl. Math. Inf. Sci. 12 (3), 517–527 (2018).

    Article  MathSciNet  Google Scholar 

  44. B. C. Iragi and J. B. Munyakazi, “A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation,” Int. J. Comput. Math. 97 (4), 759–771 (2020).

    Article  MathSciNet  Google Scholar 

  45. G. M. Amiraliyev, Ö. Yapman, and M. Kudu, “A fitted approximate method for a Volterra delay-integro-differential equation with initial layer,” Hacet. J. Math. Stat. 48 (5), 1417–1429 (2019).

    MathSciNet  Google Scholar 

  46. Ö. Yapman, G. M. Amiraliyev, and I. Amirali, “Convergence analysis of fitted numerical method for a singularly perturbed nonlinear Volterra integro-differential equation with delay,” J. Comput. Appl. Math. 355, 301–309 (2019).

    Article  MathSciNet  Google Scholar 

  47. M. Kudu, I. Amirali, and G. M. Amiraliyev, “A finite-difference method for a singularly perturbed delay integro-differential equation,” J. Comput. Appl. Math. 308, 379–390 (2016).

    Article  MathSciNet  Google Scholar 

  48. N. A. Mbroh, S. C. O. Noutchie, and R. Y. M. P. Massoukou, “A second order finite difference scheme for singularly perturbed Volterra integro-differential equation,” Alex. Eng. J. 59 (4), 2441–2447 (2020).

    Article  Google Scholar 

  49. Ö. Yapman and G. M. Amiraliyev, “A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation,” Int. J. Comput. Math. 97 (6), 1293–1302 (2020).

    Article  MathSciNet  Google Scholar 

  50. X. Tao, and Y. Zhang, “The coupled method for singularly perturbed Volterra integro-differential equations,” Adv. Differ. Equations 2019, 217 (2019).

    Article  MathSciNet  Google Scholar 

  51. A. Panda, J. Mohapatra, and I. Amirali, “A second-order post-processing technique for singularly perturbed Volterra integro-differential equations,” Mediterr. J. Math. 18, 231 (2021).

    Article  MathSciNet  Google Scholar 

  52. G. M. Amiraliyev, M. E. Durmaz, and M. Kudu, “Uniform convergence results for singularly perturbed Fredholm integro-differential equation,” J. Math. Anal. 9 (6), 55–64 (2018).

    MathSciNet  Google Scholar 

  53. G. M. Amiraliyev, M. E. Durmaz, and M. Kudu, “Fitted second order numerical method for a singularly perturbed Fredholm integro-differential equation,” Bull. Belg. Math. 27 (1), 71–88 (2020).

    MathSciNet  Google Scholar 

  54. E. Cimen, and M. Cakir, “A uniform numerical method for solving singularly perturbed Fredholm integro-differential problem,” Comput. Appl. Math. 40, 42 (2021).

    Article  MathSciNet  Google Scholar 

  55. M. E. Durmaz, and G. M. Amiraliyev, “A robust numerical method for a singularly perturbed Fredholm integro-differential equation,” Mediterr. J. Math. 18, 24 (2021).

    Article  MathSciNet  Google Scholar 

  56. M. E. Durmaz, I. Amirali, and G. M. Amiraliyev, “An efficient numerical method for a singularly perturbed Fredholm integro-differential equation with integral boundary condition,” J. Appl. Math. Comput. 69 (1), 505–528 (2023).

    Article  MathSciNet  Google Scholar 

  57. J. Huang, Z. Cen, A. Xu, and L. B. Liu, “A posteriori error estimation for a singularly perturbed Volterra integro-differential equation,” Numer. Algorithms 83 (2), 549–563 (2020).

    Article  MathSciNet  Google Scholar 

  58. B. Kalimbetov and V. Safonov, “Regularization method for singularly perturbed integro-differential equations with rapidly oscillating coefficients and rapidly changing kernels,” Axioms 9 (4), 131 (2020).

    Article  Google Scholar 

  59. Y. Liang, L. B. Liu, and Z. Cen, “A posteriori error estimation in maximum norm for a system of singularly perturbed Volterra integro-differential equations,” Comput. Appl. Math. 39, 255 (2020).

    Article  MathSciNet  Google Scholar 

  60. A. Panda, J. Mohapatra, and N. R. Reddy, “A comparative study on the numerical solution for singularly perturbed Volterra integro-differential equations,” Comput. Math. Model. 32, 364–375 (2021).

    Article  MathSciNet  Google Scholar 

  61. K. Parand and J. A. Rad, “An approximation algorithm for the solution of the singularly perturbed Volterra integro-differential and Volterra integral equations,” Int. J. Nonlinear Sci. 12 (4), 430–441 (2011).

    MathSciNet  Google Scholar 

  62. J. I. Ramos, “Piecewise-quasilinearization techniques for singularly perturbed Volterra integro-differential equations,” Appl. Math. Comput. 188 (2), 1221–1233 (2007).

    MathSciNet  Google Scholar 

  63. A. Zhumanazarova and Y. I. Cho, “Asymptotic convergence of the solution of a singularly perturbed integro-differential boundary value problem,” Mathematics 8 (2), 213 (2020).

    Article  Google Scholar 

  64. M. Cakir and B. Gunes, “Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations,” Georgian Math. J. 29 (2), 193–203 (2022).

    Article  MathSciNet  Google Scholar 

  65. M. Cakir and B. Gunes, “A new difference method for the singularly perturbed Volterra–Fredholm integro-differential equations on a Shishkin mesh,” Hacet. J. Math. Stat. 51 (3), 787–799 (2022).

    Article  MathSciNet  Google Scholar 

  66. M. Cakir and B. Gunes, “A fitted operator finite difference approximation for singularly perturbed Volterra–Fredholm integro-differential equations,” Mathematics 10 (19), 3560 (2022).

    Article  Google Scholar 

  67. A. A. Samarskii, The Theory of Difference Schemes (CRC, Boca Raton, 2011).

    Google Scholar 

  68. M. Cakir and G. M. Amiraliyev, “Numerical solution of a singularly perturbed three-point boundary value problem,” Int. J. Comput. Math. 84 (10), 1465–1481 (2007).

    Article  MathSciNet  Google Scholar 

  69. G. Amiraliyev and M. Cakir, “A uniformly convergent difference scheme for a singularly perturbed problem with convective term and zeroth order reduced equation,” Int. J. Appl. Math. 2 (12), 1407–1420 (2000).

    MathSciNet  Google Scholar 

  70. G. M. Amiraliyev and Y. D. Mamedov, “Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations,” Turk. J. Math. 19 (3), 207–222 (1995).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baransel Gunes or Musa Cakir.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunes, B., Cakir, M. A Uniformly Convergent Numerical Method for Singularly Perturbed Semilinear Integro-Differential Equations with Two Integral Boundary Conditions. Comput. Math. and Math. Phys. 63, 2513–2527 (2023). https://doi.org/10.1134/S0965542523120114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542523120114

Keywords:

Navigation