Log in

Nonlinear Schrödinger Equation and the Hyperbolization Method

  • PARTIAL DIFFERENTIAL EQUATIONS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

“Nonstandard” equations (like a nonlinear Schrödinger one) that require very small steps in space and time in numerical computations are considered. Methods for time step increase via hyperbolization, i.e., adding the second time derivative multiplied by a small parameter, are studied. It is shown that the results can be improved by introducing an additional dam** term associated with the same small parameter. The limiting values for the relation between the small parameter and the stepsizes in space and time are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. K. Dodd, J. C. Eelbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, New York, 1984).

    Google Scholar 

  2. B. A. Malomed, “Nonlinear Schrödinger equations,” in Encyclopedia of Nonlinear Science, Ed. by A. Scott (Routledge, New York, 2005), pp. 639–643.

    Google Scholar 

  3. B. A. Malomed, Control of Solitons in Periodic Media (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  4. C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse (Springer, Berlin, 1999).

    MATH  Google Scholar 

  5. Self-Focusing: Past and Present Fundamentals and Prospects, Ed. by R. W. Boyd, S. G. Lukishova, and Y. R. Shen (Springer Science + Business Media, New York, 2009).

  6. A. D. Yunakovsky, Modeling of the Nonlinear Schrödinger Equation (Inst. Prikl. Fiz., Nizhny Novgorod, 1995) [in Russian].

    Google Scholar 

  7. E. M. Sher and A. D. Yunakovsky, “Construction of a numerical algorithm for the vector Zakharov system with dam**,” Mat. Model. 12 (11), 70–77 (2000).

    MathSciNet  Google Scholar 

  8. A. G. Litvak, T. A. Petrova, G. M. Fraiman, E. M. Sher, and A. D. Yunakovsky, “Numerical simulation of wave collapses,” Physica D 52 (1), 36–48 (1991).

    Article  MATH  Google Scholar 

  9. V. L. Rvachev and V. A. Rvachev, Approximation Theory and Atomic Functions (Znanie, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  10. I. S. Chekhovskoy, V. I. Paasonen, O. V. Shtyrina, and M. P. Fedoruk, “Numerical approaches to simulation of multi-core fibers,” J. Comput. Phys. 334, 31–44 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. S. Chekhovskoy, O. V. Shtyrina, and S. Wabnitz, “Finding spatiotemporal light bullets in multicore and multimode fibers,” Optics Express 28 (6), 7817–7828 (2020).

    Article  Google Scholar 

  12. J. C. Adam, A. G. Serveniere, and D. Laval, “Efficiency of resonant absorption of electromagnetic waves in an inhomogeneous plasma,” Phys. Fluids 25 (2), 376–383 (1982).

    Article  MATH  Google Scholar 

  13. X. Antoine, A. Arnold, Ch. Besse, M. Ehrhardt, and A. Scheadle, “Review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,” Commun. Comput. Phys. 4 (4), 729–796 (2008).

    MathSciNet  MATH  Google Scholar 

  14. T. R. Taha and M. J. Ablowitz, “Analytical and numerical aspects of certain nonlinear evolution equations: II. Numerical nonlinear Schrödinger equation,” J. Comput. Phys. 55 (2), 203–230 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. S. Ismail and T. R. Taha, “Numerical simulation of coupled nonlinear Schrödinger equation,” Math. Comput. Simul. 56 (6), 547–562 (2001).

    Article  MATH  Google Scholar 

  16. T. R. Taha and Xu **angving, “Parallel split-step Fourier methods for the coupled nonlinear Schrödinger type equations,” J. Supercomput. 32, 5–23 (2005).

    Article  Google Scholar 

  17. Ya. L. Bogomolov and A. D. Yunakovsky, “Split-step Fourier method for nonlinear Schrödinger equation,” Proceedings of International Conference “Days on Diffraction” 2006, May 30–June 2, 2006.

  18. H. Holden, K. H. Karlsen, K.-A. Lie, and N. H. Risebro, Splitting Methods for Partial Differential Equations with Rough Solutions: Analysis and MATLAB Programs (Eur. Math. Soc., 2010).

  19. Ya. L. Bogomolov, E. N. Pelinovzky, and A. D. Yunakovsky, Preprint No. 275, IPF AN SSSR (Inst. of Applied Physics, USSR Academy of Sciences, Nizhny Novgorod, 1990).

  20. A. A. Davydov, B. N. Chetverushkin, and E. V. Shil’nikov, “Simulating flows of incompressible and weakly compressible fluids on multicore hybrid computer systems,” Comput. Math. Math. Phys. 50 (12), 2157–2165 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. E. Lutskii and B. N. Chetverushkin, “Compact version of the quasi-gasdynamic system for modeling a viscous compressible gas,” Differ. Equations 55 (4), 575–580 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  22. V. M. Goloviznin and B. N. Chetverushkin, “New generation algorithms for computational fluid dynamics,” Comput. Math. Math. Phys. 58 (8), 1217–1225 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  23. B. N. Chetverushkin, “Resolution limits of continuous media models and their mathematical formulations,” Math. Models Comput. Simul. 5 (3), 266–279 (2013).

    Article  MathSciNet  Google Scholar 

  24. A. Milani, “Singular limits of quasi-linear hyperbolic systems in a bounded domain of R 3 with applications to Maxwell’s equations,” Pac. J. Math. 116 (1), 111–129 (1985).

    Article  MATH  Google Scholar 

  25. B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations (MAKS, Moscow, 2004; CIMNE, Barcelona, 2008).

  26. V. A. Kudinov and I. V. Kudinov, Solution Methods for Parabolic and Hyperbolic Heat Conduction Equations, Ed. by E. M. Kartashov (Librokom, Moscow, 2015) [in Russian].

    MATH  Google Scholar 

  27. K. J. Baumeister and T. D. Hamill, “Hyperbolic heat-conduction equation—a solution for the semi-infinite body problem,” J. Heat Transfer 91, 543–548 (1969).

    Article  Google Scholar 

  28. K. V. Zhukovskii, “A harmonic solution for the hyperbolic heat conduction equation and its relationship to the Guyer–Krumhansl equation,” Moscow. Univ. Phys. Bull. 73, 45–52 (2018).

    Article  Google Scholar 

  29. C. Moler and C. Van Loan, “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later,” SIAM Rev. 45 (1), 3–49 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  30. I. P. Gavrilyuk, “Approximation of the operator exponential and applications,” Comput. Methods Appl. Math. 7 (4), 294–320 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Chu and A. George, Inside the FFT Black Box: Serial and Parallel Fast Fourier Transform Algorithms (CRC, Boca Raton, 2000).

    MATH  Google Scholar 

  32. K. R. Rao, D. N. Kim, and J.-J. Hwang, Fast Fourier Transform: Algorithms and Applications (Springer, Netherlands, 2010).

    Book  MATH  Google Scholar 

  33. V. B. Gil’denburg, A. G. Litvak, and A. D. Yunakovsky, “The dynamics of a high frequency discharge in a wave beam,” J. Phys. 40 (7), 215–216 (1979).

    Article  Google Scholar 

  34. G. M. Fraiman, E. M. Sher, W. Laedke, and A. D. Yunakovsky, “Long-term evolution of strong 2-D NSE turbulence,” Physica D 87, 325–334 (1995).

    Article  MATH  Google Scholar 

  35. V. B. Gildenburg, T. A. Petrova, and A. D. Yunakovsky, “Steady-state gas discharges in focused wave beams,” Physica D 87, 335–338 (1995).

    Article  MATH  Google Scholar 

  36. A. D. Yunakovsky, “Hyperbolization of the nonlinear Schrödinger equation,” The 18 International Conference on Differential and Functional Differential Equations, Moscow, Russia, August 13–20, 2017 (Moscow, 2017), pp. 216–217.

  37. A. D. Yunakovsky, “Hyperbolization of the nonlinear Schrödinger equation,” in Proceedings of the 28th Crimean International Fall School–Symposium on Spectral and Evolution Problems (KROMSh-2017), Sections 1–4, pp. 118–119.

  38. A. D. Yunakovsky, “Mathematical modeling of laser amplification,” in Proceedings of the 31st Crimean International Fall Mathematical School–Symposium on Spectral and Evolution Problems (KROMSh-2020) (Poliprint, Simferopol’, 2020), pp. 873–276.

  39. A. D. Yunakovsky, “Attractors of hyperbolized nonlinear Schrödinger equations,” in Proceedings of the 32nd Crimean International Fall Mathematical School–Symposium on Spectral and Evolution Problems (KROMSh-2021) (Poliprint, Simferopol’, 2021), p. 87.

  40. N. A. Zharova, A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovsky, “Multiple fractionation of wave structures in a nonlinear medium,” JETP Lett. 44 (1), 13–17 (1986).

    Google Scholar 

  41. N. A. Zharova, A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovsky, “Collapse and multiple fractionation of nonlinear wave structures,” Radiophys. Quantum Electron.29 (9), 864–870 (1986).

    Article  Google Scholar 

  42. A. G. Litvak, T. A. Petrova, A. M. Sergeev, and A. D. Yunakovsky, “On the self-effect of two-dimensional gravity wave packets on the deep water surface,” Nonlinear and Turbulent Processes in Physics, Ed. by R. Z. Sagdeev (Harwood Academic, New York, 1984), Vol. 2, pp. 861–871.

    Google Scholar 

  43. A. G. Litvak, T. A. Petrova, A. M. Sergeev, N. A. Zharova, A. D. Yunakovsky, “Self-interaction of plasma oscillations with anomalous dispersion,” Montvai Contributed Papers (1985), Vol. 9F, Part 2, p. 346.

    Google Scholar 

  44. V. P. Burskii, Methods for the Study of Boundary Value Problems for General Differential Equations (Naukova Dumka, Kiev, 2002) [in Russian].

    Google Scholar 

  45. A. D. Yunakovsky and Ya. L. Bogomolov, “Hyperbolization of an unbounded Schrödinger-type operator,” Abstracts of Papers of the 4th International Conference on Supercomputer Technologies of Mathematical Modeling, Moscow, Russia, June 19–21, 2019, p. 38.

  46. A. D. Yunakovsky, Ya. L. Bogomolov, and N. V. Sapogova, “On hyperbolized nonlinear Schrödinger type equations,” J. Phys.: Conf. Ser. 1392, 012027 (2019). https://doi.org/10.1088/1742-6596/1392/1/012027

  47. S. E. Fil’chenkov, “Instability of periodic solutions for nonlinear wave structures,” Fiz. Plazmy 13 (8), 961–966 (1987).

    Google Scholar 

  48. S. E. Fil’chenkov, G. M. Freiman, and A. D. Yunakovsky, “Numerical study of stability of surface waves,” Abstracts of Papers of All-Union Conference on Tsunami Problems, Shushenskoe, Krasnoyarsk, September 1987, pp. 119–121.

  49. W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley, Reading, Mass., 1977).

    Google Scholar 

  50. M. Ehrhardta and R. E. Mickensb, “Solutions to the discrete Airy equation: Application to parabolic equation calculations,” J. Comput. Appl. Math. 172, 183–206 (2004).

    Article  MathSciNet  Google Scholar 

  51. P. Klein, X. Antoine, C. Besse, and M. Ehrhardt, “Absorbing boundary conditions for solving N-dimensional stationary Schrödinger equations with unbounded potentials and nonlinearities,” Commun. Comput. Phys. 10 (5), 1280–1304 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  52. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  53. M. C. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2: Fourier Analysis and Self-Adjointness (Academic, New York, 1975).

  54. D. S. Agafontsev and V. E. Zakharov, “Growing of integrable turbulence: New results,” The 30th Scientific Session of the Council of the Russian Academy of Sciences on Nonlinear Dynamics; Shirshov Institute of Oceanology, December 20–21, 2021 (2021), p. 41.

  55. P. A. Berry and K. L. Schepler, “High-power, widely-tunable Cr2+:ZnSe master oscillator power amplifier systems,” Optic Express 18 (14), 15062–15072 (2010).

    Article  Google Scholar 

  56. Y. Masaki, S. Norihito, and W. Satoshi, “50 MJ/pulse, electronically tuned Cr:ZnSe master oscillator power amplifier,” Optic Express 25 (26), 32948–32956 (2017).

    Article  Google Scholar 

  57. V. E. Leshchenko, B. K. Talbert, Y. H. Lai, S. Li, Y. Tang, S. J. Hageman, G. Smith, P. Agostini, L. F. DiMauro, and C. I. Blaga, “High-power few-cycle Cr:ZnSe mid-infrared source for attosecond soft X-ray physics,” Optica 7 (8), 981–988 (2020).

    Article  Google Scholar 

  58. M. A. Il’gamov and A. N. Gil’manov, Nonreflecting Conditions on Boundaries of Computational Domains (Fizmatlit, Moscow, 2003) [in Russian].

    MATH  Google Scholar 

  59. E. B. Tereshin, V. A. Trofimov, and M. V. Fedotov, “Conservative finite-difference scheme for the problem of propagation of a femtosecond pulse in a nonlinear photonic crystal with nonreflecting boundary conditions,” Comput. Math. Math. Phys. 46 (1), 154–164 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  60. A. Ashyralyev and P. E. Sobolevskii, Well-Posedness of Parabolic Difference Equations (Birkhäuser, Basel, 1994).

    Book  MATH  Google Scholar 

Download references

Funding

This work was supported by the Scientific and Educational Mathematical Center of Nizhny Novgorod State University, agreement no. 075-02-2020-1632.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Yunakovsky.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunakovsky, A.D. Nonlinear Schrödinger Equation and the Hyperbolization Method. Comput. Math. and Math. Phys. 62, 1112–1130 (2022). https://doi.org/10.1134/S0965542522070119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542522070119

Keywords:

Navigation