Log in

Carbonation of Serpentinites of the Mid-Atlantic Ridge: 1. Geochemical Trends and Mineral Assemblages

  • Published:
Petrology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Abyssal peridotite outcrops compose vast areas of the ocean floor in the Atlantic, Indian, and Arctic Oceans, where they are an indispensable part of the oceanic crust section formed in the slow-spreading oceanic ridges (Mid-Atlantic Ridge, Southwest Indian Ridge, and Gakkel Ridge). The final stage in the evolution of abyssal peridotites in the oceanic crust is their carbonation, which they experience on the ocean floor surface or near it. The main goal of this study was to reconstruct the geochemical trends accompanying the carbonation of abyssal peridotites using MAR ultramafic rocks as an example and to identify the main factors that determine their geochemical and mineralogical differences. The composition variations of rock-forming minerals and their characteristic assemblages indicate that the initial stages of carbonation of abyssal peridotites occurred in crustal conditions simultaneously with the serpentinization of these rocks. The final stage in the crustal evolution of the abyssal peridotites is their exhumation on the ocean floor where they were brought up along the detachment faults. On the ocean floor, the abyssal peridotites in close association with gabbro form oceanic core complexes, and the degree of their carbonation sharply increases with time of their exposure on the ocean floor. The presented data made it possible to qualitatively reconstruct the sequence of events that determined the mineralogical and geochemical features of carbonatized abyssal peridotites of the MAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. Andreani, M., Mevel, C., Boullier, A.-M., et al., Dynamic control on serpentine crystallization in veins: constraints on hydration processes in oceanic peridotites, Geochem. Geophys. Geosyst., 2007, vol. 8, no. 2, p. Q02012.

    Article  Google Scholar 

  2. Bach, W., Rosner, M., Jöns, N., et al., Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock: results from ODP Leg 209, Earth Planet. Sci. Lett., 2011, vol. 311, nos. 3–4, pp. 242–252.

    Article  Google Scholar 

  3. Cannat, M., Lagabrielle, Y., Bougault, H., et al., Ultramafic and gabbroic exposures at the mid-Atlantic Ridge: geological map** in the 15° N region, Tectonophysics, 1997, vol. 279, pp. 193–213.

    Article  Google Scholar 

  4. Da Costa, I.R., Barriga, F.J.A.S., and Taylor, R.N., Late seafloor carbonate precipitation in serpentinites from the Rainbow and Saldanha sites (Mid-Atlantic Ridge), Eur. J. Mineral, 2008, vol. 20, pp. 173–181.

    Article  Google Scholar 

  5. Delacour, A., Fruh-Green, G.I., Bernasconi, S.M., et al., Carbon geochemistry of serpentinites in the Lost City hydrothermal system (30° N, MAR), Geochim. Cosmochim. Acta, 2008, vol. 72, pp. 3681–3702.

    Article  Google Scholar 

  6. Dubinina, E.O., Bortnikov, N.S., and Silantyev, S.A., Fluid–rock interaction during seprentinization of oceanic ultramafic rocks hosting the Lost City hydrothermal field, 30° N, MAR, Petrology, 2015, vol. 23, no. 6, pp. 543–558.

    Article  Google Scholar 

  7. Dubinina, E.O., Kramchaninov, A.Yu., Silantyev, S.A., and Bortnikov, N.S., Influence of the precipitation rate on the isotope (δ18O, δ13C and δ88Sr) composition of carbonate chimneys of the Lost City hydrothermal field (30° N, Mid-Atlantic Ridge), Petrology, 2020, vol. 28, no. 4, pp. 374–388.

    Article  Google Scholar 

  8. Frisby, C.P., Behavior of Rare Earth Elements and High-Field Strength Elements during Peridotite–Seawater Interaction, Ph. D. Thesis, University of South Carolina, 2016.

  9. German, C.R., Holliday, B.P., and Elderfield, H., Redox cycling of rare earth elements in the suboxic zone of the Black Sea, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 3553–3558.

    Article  Google Scholar 

  10. Jöns, N., Bach, W., and Klein, F., Magmatic influence on reaction paths and element transport during serpentinization, Chem. Geol., 2010, vol. 274, pp. 196–211.

    Article  Google Scholar 

  11. Jöns, N., Kahl, W.A., and Bach, W., Reaction-induced porosity and onset of low-temperature carbonation in abyssal peridotites: insights from 3D high-resolution microtomography, Lithos, 2017, vol. 268-271, pp. 274–284.

    Article  Google Scholar 

  12. Kelemen, P.B. and Matter, J., In situ carbonation of peridotite for CO2 storage, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 45, pp. 17295–17300.

    Article  Google Scholar 

  13. Kellermeier, M., Glaab, F., Klein, R., et al., The effect of silica on polymorphic precipitation of calcium carbonate: an on-line energy-dispersive X-ray diffraction (EDXRD) study, Nanoscale, 2013, vol. 5, pp. 7054–7065.

    Article  Google Scholar 

  14. Klein, F. and McCollom, T.M., From serpentinization to carbonation: new insights from a co2 injection experiment, Earth Planet. Sci. Lett., 2013, vol. 379, pp. 137–145.

    Article  Google Scholar 

  15. Klein, F., Humphris, S.E., and Bach, W., Brucite formation and dissolution in oceanic serpentinite, Geochem. Perspectives Lett., 2020, vol. 16, pp. 1–5.

    Article  Google Scholar 

  16. Kodolanyi, J., Pettke, T., Spandler, C., et al., Geochemistry of ocean floor and fore-arc serpentinites: constraints on the ultramafic input to subduction zones, J. Petrol., 2012, vol. 53, no. 2, pp. 235–270.

    Article  Google Scholar 

  17. Kuebler, K.E., A comparison of the iddingsite alteration products in two terrestrial basalts and the Allan Hills 77005 Martian meteorite using Raman spectroscopy and electron microprobe analyses, J. Geophys. Res. Planets, 2013, vol. 118, pp. 803–830.

    Article  Google Scholar 

  18. Lacinska, A.M. and Styles, M.T., Batemank. et al. An experimental study of the carbonation of serpentinite and partially serpentinised peridotites, Front. Earth Sci, 2017, https://doi.org/10.3389/feart.2017.00037

  19. Ludwig, K.A., Kelley, D.S., Butterfield, D.A., et al., Formation and evolution of carbonate chimneys at the Lost City hydrothermal field, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 3625–3645.

    Article  Google Scholar 

  20. Malvoisin, B., Mass transfer in the oceanic lithosphere: serpentinization is not isochemical, Earth Planet. Sci. Lett., 2015, vol. 430, pp. 75–85.

    Article  Google Scholar 

  21. Milliken, K.L. and Morgan, J.K., Chemical evidence for near seafloor precipitation of calcite in serpentinites (site 897) and serpentinite breccias (site 899), Iberia abyssal plane, Proc. ODP., Sci. Res., Eds. vol. Whitmarsh, R., et al., Eds., 1996, vol. 149, pp. 553—558.

  22. Paulick, H., Bach, W., Godard, M., et al., Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20′ N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments, Chem. Geol., 2006, vol. 234, pp. 179–210.

    Article  Google Scholar 

  23. Picazo, S., Malvoisin, B., Baumgartner, L., and Bouvier, A.-S., Low temperature serpentinite replacement by carbonates during seawater influx in the Newfoundland margin, Minerals, 2020, vol. 10, no. 2, 184.

    Article  Google Scholar 

  24. Salters, V.J.M. and Stracke, A., Composition of the depleted mantle, Geochem. Geophys. Geosyst., 2004, vol. 5, no. 5, https://doi.org/10.1029/2003GC000597

  25. Sharp, Z.D. and Barnes, J.D., Water soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones, Earth Planet. Sci. Lett., 2004, vol. 226, pp. 243–254.

    Article  Google Scholar 

  26. Silantyev, S.A., Variations in the geochemical and isotopic characteristics of residual peridotites along the Mid-Atlantic Ridge as a function of the nature of the mantle magmatic sources, Petrology, 2003, vol. 11, no. 4, pp. 305–326.

    Google Scholar 

  27. Silantyev, S.A., Mironenko, M.V., and Novoselov, A.A., Hydrothermal systems in peridotites of slow-spreading mid-oceanic ridges. modeling phase transitions and material balance: downwelling limb of a hydrothermal circulation cell, Petrology, 2009, vol. 17, no. 2, pp. 138-157.

    Article  Google Scholar 

  28. Silantyev, S.A., Novoselov, A.A., Krasnova, E.A., et al., Silicification of Peridotites at the Stalemate Fracture Zone (Northwestern Pacific): reconstruction of the conditions of low-temperature weathering and tectonic interpretation, Petrology, 2012, vol. 20, no. 1, pp. 21–39.

    Article  Google Scholar 

  29. Silantyev, S.A., Kubrakova, I.V., and Tyutyunnik, O.A., Distribution of siderophile and chalcophile elements in serpentinites of the oceanic lithosphere as an insight into the magmatic and crustal evolution of mantle peridotites, Geochem. Int., 2016, vol. 54, no. 12, pp. 1019–1034.

    Article  Google Scholar 

  30. Silantyev, S.A., Kubrakova, I.V., Portnyagin, M.V., et al., Ultramafic–mafic assemblage of plutonic rocks and hornblende schists of Shirshov Rise, Bering Sea, and Stalemate Ridge, Northwest Pacific: geodynamic interpretations of geochemical data, Petrology, 2018, vol. 26, no. 5, pp. 492–514.

    Article  Google Scholar 

  31. Styles, M.T., Sanna, A., Lacinska, A.M., et al., The variation in composition of ultramafic rocks and the effect on their suitability for carbon dioxide sequestration by mineralization following acid leaching, Greenhouse Gases: Science and Technology, 2014, vol. 4, pp. 440–451.

    Article  Google Scholar 

  32. Sulpis, O., Agrawal1, P., Wolthers, M., et al., Aragonite dissolution protects calcite at the seafloor, Nature Commun., 2022, vol. 13, p. 1104. https://doi.org/10.1038/s41467-022-28711-z

    Article  Google Scholar 

  33. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in Ocean Basins, Saunders, A.D and Norry. M.J. Eds., Geol. Soc. Spec. Publ., London, 1989, vol. 42, 313–345.

    Google Scholar 

  34. Tostevin, R., Shields, G.A., Tarbuck, G.M., et al., Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings, Chem. Geol., 2016, vol. 438, pp. 146–162.

    Article  Google Scholar 

  35. Ulrich, M., Munoz, M., Guillot, S., et al., Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite, Contrib. Mineral. Petrol., 2014, vol. 167, p. 952.

    Article  Google Scholar 

  36. Yatabe, A., Vanko, D.A., and Ghazi, M., Petrography and chemical compositions of secondary calcite and aragonite in Juan de Fuca ridge basalts altered at low temperature, Proceedings of the Ocean Drilling Program, Sci. Res, Fisher, A. Davis, E.E., and Escutia, S., Eds., 2000, vol. 168, pp. 137–148.

Download references

Funding

This study was made in the framework of government-financed project no. 0137-2019-0012 “Petrology, Geochemistry, and Geodynamics of Formation and Evolution of Lithosphere of Oceans and Continents”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Silantyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silantyev, S.A., Krasnova, E.A., Badyukov, D.D. et al. Carbonation of Serpentinites of the Mid-Atlantic Ridge: 1. Geochemical Trends and Mineral Assemblages. Petrology 30 (Suppl 1), S25–S52 (2022). https://doi.org/10.1134/S0869591123010095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123010095

Keywords:

Navigation