Log in

Relics of the Eoarchean Continental Crust of the Anabar Shield, Siberian Craton

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

In the northern part of the Anabar Shield, orthopyroxene plagiogneisses of the granulite Daldyn Group host lenses of mafic rocks surrounded by melanocratic rims. According to their chemical composition, the mafic rocks correspond to subalkaline gabbro, the plagiogneisses correspond to granodiorites contaminated with mafic material, and the rims are diorites. The orthopyroxene plagiogneisses of granodiorite composition have 147Sm/144Nd = 0.1097, εNd(Т) = 1.6, TNd(DM) = 3.47 Ga and are metamorphosed anatectic granitoids with an age of 3.34 Ga. The mafic rocks have high Zr, Th, and Pb contents, are enriched in REE (ΣREE = 636 ppm), with a high degree of fractionation [(La/Yb)N = 17.73] and a well-defined Eu minimum (Eu/Eu* = 0.51), and have 147Sm/144Nd = 0.099, εNd(Т) = 1.4 and TNd(DM) = 3.65 Ga. It is assumed that these rocks crystallized from melt derived from an enriched mantle (plume) source. Based on U–Pb (SHRIMP-II) dating of 50 zircon grains from the mafic rocks, a group of grains with concordant ages from 3567 to 1939 Ma was distinguished, along with a large number of discordant values. Multiple measurements in zircon grains with discordant age values make it possible to identify seven grains of Eoarchean age, with upper intercepts of the discordia corresponding to 3987 ± 71 to 3599 ± 33 Ma. The Lu–Hf systematics of 14 zircon grains is characterized by εHf(T) = +3.7 and by close values of THf(DM) = 3.95 and \({\text{T}}_{{{\text{Hf}}}}^{{\text{C}}}\) = 3.93 Ga (3.99 Ga for the oldest zircon). The Paleoarchean (3.57 Ga) zircons are characterized by negative values of εHf(T) = –5.3 and –6.8, THf(DM) = 3.92–3.98 Ga, and \({\text{T}}_{{{\text{Hf}}}}^{{\text{C}}}\) = 4.14–4.24 Ga, which indicate recycling of the preexisting Eoarchean and Hadean continental crust. The younger zircon (3287–2410 Ma) was also formed when the preexisting crust was recycled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. XMg = Mg2+/(Mg2+ + Fe2+), f.u.

  2. Мg# = Mg/(Mg + Fe), molar.

  3. Eu/Eu* = EuN/[SmN × GdN]1/2, Ce/Ce* = CeN/[LaN × PrN]1/2, where EuN, SmN, GdN …(Lu/Gd)N is the concentrations and concentration rations of chondrite-normalized concentrations of elements.

  4. ASI (aluminium saturation index) = Al2O3/(CaO + Na2O + K2O), molar.

  5. The results of U–Pb (SHRIMP-II) analysis of zircon are presented in Table ESM_1.xls (Suppl. 1) in the Russian and English on-line versions of this paper, which are available at https://elibrary.ru/ and http://springer.longhoe.net/, respectively.

  6. D, % is discordance: D = 100[(Age(207Pb/206Pb))/ (Age(206Pb/238Pb)) – 1].

  7. LREE-I = (Dy/Nd) + (Dy/Sm).

  8. Porous zircon is interpreted as magmatic zircon altered by dissolution–reprecipitation in the presence of aqueous fluid (Grimes et al., 2009).

REFERENCES

  1. Arkhei Anabarskogo shchita i problemy rannei evolyutsii Zemli (Archean of the Anabar Shield and Problems of the Early Earth’s Evolution), Moscow: Nauka, 1988.

  2. Bell, E.A., Boehnke, P., and Harrison, T.M., Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration, Geochim. Cosmochim. Acta, 2016, vol. 191, pp. 187–202.

    Article  Google Scholar 

  3. Black, L.P., Kamo, S.L., Allen, C.M., et al., Temora 1: a new zircon standard for Phanerozoic U-Ob geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.

    Article  Google Scholar 

  4. Blichert-Toft, J. and Albarede, F., The Lu-Hf isotope geochemistry of chondrites and evolution of the crust–mantle system, Earth Planet. Sci. Lett., 1997, vol. 148, pp. 243–258.

    Article  Google Scholar 

  5. Bouvier, A.-S., Ushikubo, T., Kita, N., et al., Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids, Contrib. Mineral. Petrol., 2012, vol. 163, pp. 745–768.

    Article  Google Scholar 

  6. O’Brien, T.M. and Miller, E.L., Continuous zircon growth during long-lived granulite facies metamorphism: microtextural, U-Pb, Lu-Hf and trace element study of Caledonian rocks from the Arctic, Contrib. Mineral. Petrol., 2014, vol. 168, pp. 1071–1088.

    Article  Google Scholar 

  7. Chauvel, C. and Blichert-Toft, J., A hafnium isotope and trace element perspective on melting of the depleted mantle, Earth Planet. Sci. Lett., 2001, vol. 190, pp. 137–151.

    Article  Google Scholar 

  8. Chen, R.-X., Zheng, Y.-F., and Zie, L., Metamorphic growth and recrystallization of zircon: distinction by simultaneous in-situ analyses of trace elements, U-Th-Pb and Lu-Hf isotopes in zircon from eclogite-facies rocks in the Sulu Orogen, Lithos, 2010, vol. 114, pp. 132–154.

    Article  Google Scholar 

  9. Condie, K.C., TTGs and adakites: are they both slab melts?, Lithos, 2005, vol. 80, pp. 33–44.

    Article  Google Scholar 

  10. Corfu, F., Hanchar, J.M., Hoskin, P.W.O., and Kinny, P., Atlas of zircon textures, Rev. Mineral. Geochem., 2003, vol. 53, pp. 469–500.

    Article  Google Scholar 

  11. Elhlou, S., Belousova, E., Griffin, W.L., et al., Trace element and isotopic composition of GJ red zircon standard by laser ablation, Geochim. Cosmochim. Acta, 2006, vol. 70, p. A158.

    Article  Google Scholar 

  12. Fedotova, A.A., Bibikova, E.V., and Simakin, S.G., Ion-microprobe zircon geochemistry as an indicator of mineral genesis during geochronological studies, Geochem Int., 2008, vol. 47, no. 9, pp. 912–927.

    Article  Google Scholar 

  13. Gerdes, A. and Zeh, A., Zircon formation versus zircon alteration - new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of archean zircon from the central zone of the Limpopo Belt, Chem. Geol., 2009, vol. 261, pp. 230–243.

    Article  Google Scholar 

  14. Goldstein, S.J. and Jacobsen, S.B., Nd and Sm isotopic systematics of river water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  15. Griffin, W.L., Pearson, N.J., Belousova, E., et al., The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites, Geochim. Cosmochim. Acta, 2000, vol. 64, pp. 133–147.

    Article  Google Scholar 

  16. Griffin, W.L., Belousova, E.A., O’Neill, C., et al., The world turns over: Hadean–Archean crust–mantle evolution, Lithos, 2014, vol. 189, pp. 2–15.

    Article  Google Scholar 

  17. Grimes, C.B., John, B.E., Cheadle, M.J., et al., On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere, Contrib. Mineral. Petrol., 2009, vol. 158, pp. 757–783.

    Article  Google Scholar 

  18. Gusev, N.I., Anabarskii shchit Sibirskogo kratona: veshchestvennyi sostav, geokhimiya, geokhronologiya (Anabar Shield of the Siberian Craton: Compositon, Geochemistry, Geochronology), Saarbrucken: LAMBERT Academic Publ, 2013.

  19. Gusev, N.I., Pushkin, M.G., Kruglova, A.A., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). List R-49-Olenek. Ob"yasn. Zapiska (State Geological Map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation) Sheet R-49-Olenek. Explanatory Note)), St. Petersburg: Kartfabrika VSEGEI, 2016.

  20. Gusev, N.I., Sergeeva, L.Yu., Skublov, S.G., et al., Composition and relations of Early and Late Archean granulites in the Bekelekhskaya sequence of the Anabar Shield (Siberian Craton), Regional.Geol. Metallogen., 2017, vol. 70, pp. 17–35.

    Google Scholar 

  21. Harley, S.L., The origins of granulites: a metamorphic perspective, Geol. Mag., 1989, vol. 126, pp. 215–247.

    Article  Google Scholar 

  22. Harley, S.L., Kelly, N.M., and Moller, A., Zircon behaviour and thermal histories of mountain chains, Elements, 2007, vol. 3, no. 1, pp. 25–30.

    Article  Google Scholar 

  23. Hawkesworth, C.J., Cawood, P.A., Dhuime, B., and Kemp, T.I.S., Earth’s continental lithosphere through time, Annu. Rev. Earth Planet. Sci., 2017, vol. 45, pp. 169–198.

    Article  Google Scholar 

  24. Hoffmann, J.E., Münker, C., Næraat, T., et al. Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs, Geochim. Cosmochim. Acta, 2011, vol. 75, pp. 4157–4178.

    Article  Google Scholar 

  25. Hoskin, P.W.O. and Black, L.P., Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon, J. Metamorph. Geol., 2000, vol. 18, pp. 423–439.

    Article  Google Scholar 

  26. Hoskin, P.W.O., Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 637–648.

    Article  Google Scholar 

  27. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and achondrites, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  28. Kapitonov, I.N., Adamskaya, E.V., Lokhov, K.I., and Sergeev, S.A., Opportunities of LA-ICP-MS determination of 176Hf/177Hf in the oldest (>3 Ga) zircons, XVIII simpozium po geokhimii izotopov, Tez. dokl. (18th Symposium on Isotope Geochemistry), Moscow: GEOKhI RAN, 2007, p. 117.

  29. Lipenkov, G.V., Mashchak M.S., Kirichenko, V.T., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii masshtaba 1 : 1 000 000 (tret’e pokolenie). Seriya Anabarskaya. List R-48-Khatanga. Ob”yasn. Zapiska (State Geological Map of the Russian Federation on a Scale 1 : 1 000 000 (Third Generation). Anabar Series. Sheet R-48-Khatanga. Explanatory Notes), St. Petersburg: Kartfabrika VSEGEI, 2016.

  30. Ludwig, K.R., User’s manual for ISOPLOT/Ex. version 2.10. a geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center Spec. Publ., 1999, vol. 1.

    Google Scholar 

  31. Ludwig, K.R., SQUID 1.00. a user’s manual, Berkeley Geochronol. Center Spec. Publ., 2000, vol. 2.

    Google Scholar 

  32. Malitch, K.N., Belousova, E.A., Griffin, W.L., et al., Magmatic evolution of the ultramafic-mafic Kharaelakh intrusion (Siberian Craton, Russia): insights from trace-element, U-Pb and Hf-isotope data on zircon, Contrib. Mineral. Petrol., 2010, vol. 159, pp. 753–768.

    Article  Google Scholar 

  33. Marsh, J.H. and Stockli, D.F., Zircon U-Pb and trace element zoning characteristics in an anatectic granulite domain: insights from LASS-ICP-MS depth profiling, Lithos, 2015, vol. 239, pp. 170–185.

    Article  Google Scholar 

  34. Nozhkin, A.D., Likhanov, I.I., Savko, K.A., et al., Sapphirine-Bearing Ultrahigh-Temperature Granulites of the Anabar Shield: Chemical Composition, U–Pb Zircon Ages, and PT Conditions of Metamorphism, Dokl. Earth Sci., 2018, vol. 479, no. 1, pp. 347–351.

    Article  Google Scholar 

  35. Paquette, J.L., Ionov, D.A., Agashev, A.M., et al., Age, provenance and Precambrian evolution of the Anabar shield from U-Pb and Lu-Hf isotope data on detrital zircons, and the history of the northern and central Siberian craton, Precambrian Res., 2017, vol. 301, pp. 134–144.

    Article  Google Scholar 

  36. Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya (Petrographic Code. Magmatic, Metamorphic, Metasomatic, and Impact Rocks), 3rd Edition, St. Petersburt: Izd-vo VSEGEI, 2009.

  37. Prakash, D., Singh, P.C., Arima, M., and Singh, T., P-T history and geochemical characteristics of mafic granulites and charnockites from west of Periya, North Kerala, southern India, J. Asian Earth Sci., 2012, vol. 61, pp. 102–115.

    Article  Google Scholar 

  38. Rapp, R.P. and Watson, E.B., Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crustal-mantle recycling, J. Petrol., 1995, vol. 36, pp. 891–931.

    Article  Google Scholar 

  39. Reimink, J.R., Chacko, T., Stern, R.A., and Heaman, L.M., The birth of a cratonic nucleus: lithogeochemical evolution of the 4.02–2.94 Ga Acasta Gneiss Complex, Precambrian Res., 2016, vol. 281, pp. 453–472.

    Article  Google Scholar 

  40. Rubatto, D., Zircon: the metamorphic mineral, Rev. Mineral. Geochem., 2017, vol. 83, pp. 261–295.

    Article  Google Scholar 

  41. Scherer, E., Munker, C., and Mezger, K., Calibration of the lutetium-hafnium clock, Science, 2001, vol. 293, pp. 683–687.

    Article  Google Scholar 

  42. Shatsky, V.S., Malkovets, V.G., Belousova, E.A., et al., Multi-stage modification of Paleoarchean crust beneath the Anabar tectonic province (Siberian Craton), Precambrian. Res., 2018, vol. 305, pp. 125–144.

    Article  Google Scholar 

  43. Stepanyuk, L.M., Ponomarenko, A.N., Yakovlev, B.G., et al., Crystal genesis and age of zircon in the granulite-facies rocks: evidence from the mafic granilite of the Daldyn Group of the Anabar Shield), Mineral. Zh., 1993, vol. 15, no. 2, pp. 40–52.

    Google Scholar 

  44. Sun, S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Spec. Publ., 1989, no. 42, pp. 313–345.

  45. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Composition and Evolution, Oxford: Blackwell, 1985.

    Google Scholar 

  46. Trail, D., An accessory mineral and experimental perspective on the evolution of the early crust, Am. Mineral., 2018, vol. 103, pp. 1335–1344.

    Article  Google Scholar 

  47. Villa, I.M. and Hanchar, J.M., Age discordance and mineralogy, Am. Mineral., 2017, vol. 102, pp. 2422–2439.

    Article  Google Scholar 

  48. Watson, E. and Harrison, T., Zircon thermometer reveals minimum melting conditions on earliest earth, Science, 2005, vol. 308, pp. 841–844.

    Article  Google Scholar 

  49. Werner, C.D., Saxonian granulites—a contribution to the geochemical diagnosis of original rocks in high-metamorphic complexes, Gerlands Beitr. Geopys., 1987, vol. 96, nos. 3–4, pp. 271–290.

    Google Scholar 

  50. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  51. Williams, I.S., U-Th-Pb geochronology by ion-microprobe, Rev. Econ. Geol., 1998, vol. 7, pp. 1– 35.

    Article  Google Scholar 

  52. Winther, T.K., An experimentally based model for the origin of tonalitic and trondhjemitic melts, Chem. Geol., 1996, vol. 127, pp. 43–59.

    Article  Google Scholar 

  53. Woodhead, J., Hergt, J., Shelley, M., et al., Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation, Chem. Geol., 2004, vol. 209, pp. 121–135.

    Article  Google Scholar 

  54. Woodhead, J. and Hergt, J., Preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination, Geostand. Geoanal. Res., 2005, vol. 29, pp. 183–195.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the reviewers of Petrology for constructive criticism, which led us to significantly improve the manuscript.

Funding

This study was carried out using materials acquired for 1 : 1 000 000 State Geological Map (third generation) of the Russian Federation, Sheet R-49–Olenek. The geochemistry of zircon was studied under government-financed program for the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences (Project 0153-2019-0002). This study was supported by the Russian Foundation for Basic Research, project no. 18-35-00229/18 mol-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Gusev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Kurdyukov

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, N.I., Sergeeva, L.Y., Larionov, A.N. et al. Relics of the Eoarchean Continental Crust of the Anabar Shield, Siberian Craton. Petrology 28, 118–140 (2020). https://doi.org/10.1134/S0869591120020034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120020034

Keyword:

Navigation