Log in

Mechanisms of the Acidosis Effect on Vascular Tone

  • EXPERIMENTAL AND GENERAL THEORETICAL STUDIES
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The activity of many physiological mechanisms depends on pH; therefore, maintaining a normal pH in the body is one of the important tasks of homeostatic regulation. Shifts in the acid–base balance can be associated with both pathological and physiological processes. Physiological acidosis in skeletal muscles appears due to physical exercise as muscle contractions may significantly reduce pH in muscle fibers and interstitium. However, after the cessation of contractions, the pH level rapidly normalizes, which is largely ensured by the work of the circulatory system, which removes metabolic products from the muscle. Acidosis causes vasodilatation by affecting the activities of numerous mechanisms in smooth muscle and endothelial cells and by inhibiting vasoconstrictor nerve influence. Vasodilation and increased muscle blood flow are favorable to recovery of the skeletal muscle performance following intense contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. Berend, K., de Vries, A.P.J., and Gans, R.O.B., Physiological approach to assessment of acid–base disturbances, N. Engl. J. Med., 2014, vol. 371, no. 15, p. 1434.

    Article  PubMed  Google Scholar 

  2. Seifter, J.L. and Chang, H.Y., Extracellular acid-base balance and ion transport between body fluid compartments, Physiology (Bethesda), 2017, vol. 32, no. 5, p. 367.

    Article  CAS  PubMed  Google Scholar 

  3. Silva, P.H.I., Unwin, R., Hoorn, E.J., et al., Acidosis, cognitive dysfunction and motor impairments in patients with kidney disease, Rev. Nephrol. Dial. Transplant., 2021, vol. 37, p. 4.

    Article  Google Scholar 

  4. Moshiro, R., Mdoe, P., and Perlman, J.M., A global view of neonatal asphyxia and resuscitation, Front. Pediatr., 2019, vol. 7.

  5. Roussel, M., Mattei, J.P., Le Fur, Y., et al., Metabolic determinants of the onset of acidosis in exercising human muscle: A 31P-MRS study, J. Appl. Physiol., 2003, vol. 94, no. 3, p. 1145.

    Article  CAS  PubMed  Google Scholar 

  6. Cannon, D.T., Bimson, W.E., Hampson, S.A., et al., Skeletal muscle ATP turnover by 31P magnetic resonance spectroscopy during moderate and heavy bilateral knee extension, J. Physiol., 2014, vol. 592, no. 23, p. 5287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartlett, M.F., Fitzgerald, L.F., Nagarajan, R., et al., Oxidative ATP synthesis in human quadriceps declines during 4 minutes of maximal contractions, J. Physiol., 2020, vol. 598, no. 10, p. 1847.

    Article  CAS  PubMed  Google Scholar 

  8. Juel, C., Regulation of pH in human skeletal muscle: adaptations to physical activity, Acta Physiol. (Oxford), 2008, vol. 193, no. 1, p. 17.

    Article  CAS  Google Scholar 

  9. Sarelius, I. and Pohl, U., Control of muscle blood flow during exercise: local factors and integrative mechanisms, Acta Physiol. (Oxford), 2010, vol. 199, no. 4, p. 349.

    Article  CAS  Google Scholar 

  10. Boedtkjer, E., Acid-base regulation and sensing: accelerators and brakes in metabolic regulation of cerebrovascular tone, J. Cereb. Blood Flow Metab., 2018, vol. 38, no. 4, p. 588.

    Article  CAS  PubMed  Google Scholar 

  11. Tian, K., Vogel, P., Lassen, N.A., et al., Role of extracellular and intracellular acidosis for hypercapnia-induced inhibition of tension of isolated rat cerebral arteries, Circ. Res., 1995, vol. 76, no. 2, p. 269.

    Article  CAS  PubMed  Google Scholar 

  12. Yartsev, V.N., Karachentseva, O.V., and Dvorets-ky, D.P., Effect of pH changes on reactivity of rat mesenteric artery segments at different magnitude of stretch, Acta Physiol. Scand., 2002, vol. 174, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  13. Mohanty, I., Suklabaidya, S., and Parija, S.C., Acidosis reduces the function and expression of α1D-adrenoceptor in superior mesenteric artery of capra hircus, Int. J. Pharmacol., 2016, vol. 48, no. 4, p. 399.

    CAS  Google Scholar 

  14. Aoyama, Y., Ueda, K., Setogawa, A., and Kawai, Y., Effects of pH on contraction and Ca2+ mobilization in vascular smooth muscles of the rabbit basilar artery, Jpn. J. Physiol., 1999, vol. 49, no. 1, p. 55.

    Article  CAS  PubMed  Google Scholar 

  15. Akanji, O., Weinzierl, N., Schubert, R., and Schilling, L., Acid sensing ion channels in rat cerebral arteries: probing the expression pattern and vasomotor activity, Life Sci., 2019, vol. 227, p. 193.

    Article  CAS  PubMed  Google Scholar 

  16. Aleksandrowicz, M. and Kozniewska, E., Compromised regulation of the rat brain parenchymal arterioles in vasopressin-associated acute hyponatremia, Microcirculation, 2020, vol. 27, no. 7, p. 1.

    Article  Google Scholar 

  17. Hessellund, A., Aalkjaer, C., and Bek, T., Effect of acidosis on isolated porcine retinal vessels, Cur. Eye Res., 2006, vol. 31, no. 5, p. 427.

    Article  CAS  Google Scholar 

  18. Rohra, D.K., Sharif, H.M., Zubairi, H.S., et al., Acidosis-induced relaxation of human internal mammary artery is due to activation of ATP-sensitive potassium channels, Eur. J. Pharmacol., 2005, vol. 514, nos. 2–3, p. 175.

  19. Ives, S.J., Andtbacka, R.H.I., Noyes, R.D., et al., α1-Adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH, Exp. Physiol., 2013, vol. 98, no. 1, p. 256.

    Article  CAS  PubMed  Google Scholar 

  20. Tateishi, J. and Faber, J.E., Inhibition of arteriole α2- but not α1-adrenoceptor constriction by acidosis and hypoxia in vitro, Am. J. Physiol.: Heart. Circ. Physiol., 1995, vol. 268, no. 5, p. 37.

    Google Scholar 

  21. McGillivray-Anderson, K.M. and Faber, J.E., Effect of acidosis on contraction of microvascular smooth muscle by α1- and α2-adrenoceptors: implications for neural and metabolic regulation, Circ. Res., 1990, vol. 66, no. 6, p. 1643.

    Article  CAS  PubMed  Google Scholar 

  22. Faber, J.E., In situ analysis of α-adrenoceptors on arteriolar and venular smooth muscle in rat skeletal muscle microcirculation, Circ. Res., 1988, vol. 62, no. 1, p. 37.

    Article  CAS  PubMed  Google Scholar 

  23. Tykocki, N.R., Boerman, E.M., and Jackson, W.F., Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles, Compr. Physiol., 2017, vol. 7, no. 2, p. 485.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jackson, W.F., KV channels and the regulation of vascular smooth muscle tone, Microcirculation, 2018, vol. 25, no. 1, p. 1.

    Article  Google Scholar 

  25. Vorotnikov, A.V., Krymsky, M.A., and Shirinsky, V.P., Signal transduction and protein phosphorylation in smooth muscle contraction, Biochemistry (Moscow), 2002, vol. 67, no. 12, p. 1309. https://doi.org/10.1023/A:1021835924335

    Article  CAS  PubMed  Google Scholar 

  26. West, G., Leppla, D., and Simard, J., Effects of external pH on ionic currents in smooth muscle cells from the basilar artery of the guinea pig, Circ. Res., 1992, vol. 71, no. 1, p. 201.

    Article  CAS  PubMed  Google Scholar 

  27. Klöckner, U. and Isenberg, G., Calcium channel current of vascular smooth muscle cells: extracellular protons modulate gating and single channel conductance, J. Gen. Physiol., 1994, vol. 103, no. 4, p. 665.

    Article  PubMed  Google Scholar 

  28. Murphy, T.V., Broad, L.M., and Garland, C.J., Characterisation of inositol 1,4,5-trisphosphate binding sites in rabbit aortic smooth muscle, Eur. J. Pharmacol., Mol. Pharmacol. Sect., 1995, vol. 290, no. 2, p. 145.

    Article  CAS  Google Scholar 

  29. Loutzenhiser, R., Matsumoto, Y., Okawa, W., and Epstein, M., H+-induced vasodilation of rat aorta is mediated by alterations in intracellular calcium sequestration, Circ. Res., 1990, vol. 67, no. 2, p. 426.

    Article  CAS  PubMed  Google Scholar 

  30. Lindauer, U., Vogt, J., Schuh-Hofer, S., et al., Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels, J. Cereb. Blood Flow Metab., 2003, vol. 23, no. 10, p. 1227.

    Article  CAS  PubMed  Google Scholar 

  31. Celotto, A.C., Restini, C.B.A., Capellini, V.K., et al., Acidosis induces relaxation mediated by nitric oxide and potassium channels in rat thoracic aorta, Eur. J. Pharmacol., 2011, vol. 656, nos. 1—3, p. 88.

    Article  CAS  PubMed  Google Scholar 

  32. Schubert, R., Krien, U., and Gagov, H., Protons inhibit the BKCa channel of rat small artery smooth muscle cells, J. Vasc. Res., 2001, vol. 38, no. 1, p. 30.

    Article  CAS  PubMed  Google Scholar 

  33. Dabertrand, F., Nelson, M.T., and Brayden, J.E., Acidosis dilates brain parenchymal arterioles by conversion of calcium waves to sparks to activate BK channels, Circ. Res., 2012, vol. 110, no. 2, p. 285.

    Article  CAS  PubMed  Google Scholar 

  34. Boedtkjer, E., Praetorius, J., Matchkov, V.V., et al., Disruption of Na+, \({\text{HCO}}_{3}^{ - }\) cotransporter NBCn1 (slc4a7) inhibits no-mediated vasorelaxation, smooth muscle Ca2+ sensitivity, and hypertension development in mice, Circulation, 2011, vol. 124, no. 17, p. 1819.

    Article  CAS  PubMed  Google Scholar 

  35. Gainullina D.K., Kiryukhina O.O., Tarasova O.S. Nitric oxide in vascular endothelium: regulation of production and mechanisms of action, Usp. Fiziol. Nauk, 2013, vol. 44, no. 4, p. 88.

    Google Scholar 

  36. Mohanty, I., Parija, S.C., Suklabaidya, S., and Rattan, S., Acidosis potentiates endothelium-dependent vasorelaxation and gap junction communication in the superior mesenteric artery, Eur. J. Pharmacol., 2018, vol. 827, p. 22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Giraldez, R.R., Panda, A., **a, Y., et al., Decreased nitric-oxide synthase activity causes impaired endothelium-dependent relaxation in the postischemic heart, J. Biol. Chem., 1997, vol. 272, no. 34, p. 21420.

    Article  CAS  PubMed  Google Scholar 

  38. Mizuno, S., Demura, Y., Ameshima, S., et al., Alkalosis stimulates endothelial nitric oxide synthase in cultured human pulmonary arterial endothelial cells, Am. J. Physiol.: Lung Cell. Mol. Physiol., 2002, vol. 283, no. 1, p. 113.

    Google Scholar 

  39. Siragusa, M. and Fleming, I., The eNOS signalosome and its link to endothelial dysfunction, Pflügers Arch.—Eur. J. Physiol., 2016, vol. 468, no. 7, p. 1125.

    Article  CAS  Google Scholar 

  40. Jackson, W.F., Endothelial ion channels and cell—cell communication in the microcirculation, Front. Physiol., 2022, vol. 13.

  41. Köhler, R., Heyken, W.T., Heinau, P., et al., Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation, Arterioscler. Thromb. Vasc. Biol., 2006, vol. 26, no. 7, p. 1495.

    Article  PubMed  Google Scholar 

  42. Mendoza, S.A., Fang, J., Gutterman, D.D., et al., TRPV4- mediated endothelial Ca2+ influx and vasodilation in response to shear stress, Am. J. Physiol.: Heart. Circ. Physiol., 2010, vol. 298, no. 2.

  43. Suzuki, M., Mizuno, A., Kodaira, K., and Imai, M., Impaired pressure sensation in mice lacking TRPV4, J. Biol. Chem., 2003, vol. 278, no. 25, p. 22664.

    Article  CAS  PubMed  Google Scholar 

  44. Ching, L.-C., Kou, Y.R., Shyue, S.-K., et al., Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1, Cardiovasc. Res., 2011, vol. 91, no. 3, p. 492.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, Q., Wu, G., Reznikov, L., et al., GPR68 contributes to persistent acidosis-induced activation of AGC kinases and tyrosine phosphorylation in organotypic hippocampal slices, Front. Neurosci., 2021, vol. 1, p. e692217.

    Google Scholar 

  46. Qiao, X., Xu, J., Yang, Q.J., et al., Transient acidosis during early reperfusion attenuates myocardium ischemia reperfusion injury via PI3k-Akt-eNOS signaling pathway, Oxid. Med. Cell. Longev., 2013, vol. 2013.

  47. Tarasova, O.S. and Gainullina, D.K., Rho-kinase as a key participant in the regulation of vascular tone in normal circulation and vascular disorders, Arterial’naya Gipertoniya, 2017, vol. 23, no. 5, p. 383.

    Article  Google Scholar 

  48. Remensnyder, J.P., Mitchell, J.H., and Sarnoff, S.J., Functional sympatholysis during muscular activity: observations on influence of carotid sinus on oxygen uptake, Circ. Res., 1962, vol. 11, p. 370.

    Article  CAS  PubMed  Google Scholar 

  49. Van Teeffelen, J.W.G.E. and Segal, S.S., Interaction between sympathetic nerve activation and muscle fibre contraction in resistance vessels of hamster retractor muscle, J. Physiol., 2003, vol. 550, part 2, p. 563.

    Article  CAS  PubMed  Google Scholar 

  50. Thomas, G.D., Hansen, J., and Victor, R.G., Inhibition of alpha 2-adrenergic vasoconstriction during contraction of glycolytic, not oxidative, rat hindlimb muscle, Am. J. Physiol., 1994, vol. 266, no. 3, part 2.

  51. Horiuchi, M., Fadel, P.J., and Ogoh, S., Differential effect of sympathetic activation on tissue oxygenation in gastrocnemius and soleus muscles during exercise in humans, Exp. Physiol., 2014, vol. 99, no. 2, p. 348.

    Article  CAS  PubMed  Google Scholar 

  52. Hansen, J., Sander, M., and Thomas, G.D., Metabolic modulation of sympathetic vasoconstriction in exercising skeletal muscle, Acta Physiol. Scand., 2000, vol. 168, no. 4, p. 489.

    Article  CAS  PubMed  Google Scholar 

  53. Shepherd, J.T. and Vanhoutte, P.M., Local modulation of adrenergic neurotransmission in blood vessels, J. Cardiovasc. Pharmacol., 1985, vol. 7, suppl. 3, p. S167.

    Article  CAS  PubMed  Google Scholar 

  54. Aalkjær, C., Nilsson, H., and De Mey, J.G.R., Sympathetic and sensory-motor nerves in peripheral small arteries, Physiol. Rev., 2021, vol. 101, no. 2, p. 495.

    Article  PubMed  Google Scholar 

  55. Buckwalter, J.B., Hamann, J.J., and Clifford, P.S., Vasoconstriction in active skeletal muscles: a potential role for P2X purinergic receptors? J. Appl. Physiol., 2003, vol. 95, no. 3, p. 953.

    Article  CAS  PubMed  Google Scholar 

  56. Buckwalter, J.B., Hamann, J.J., and Clifford, P.S., Neuropeptide Y1 receptor vasoconstriction in exercising canine skeletal muscles, J. Appl. Physiol., 2005, vol. 99, no. 6, p. 2115.

    Article  CAS  PubMed  Google Scholar 

  57. Kluess, H.A., Buckwalter, J.B., Hamann, J.J., and Clifford, P.S., Acidosis attenuates P2X purinergic vasoconstriction in skeletal muscle arteries, Am. J. Physiol.: Heart. Circ. Physiol., 2005, vol. 288, no. 1.

  58. Haunstetter, A., Icking, B.S., Backs, J., et al., Differential effects of acidosis, high potassium concentrations, and metabolic inhibition on noradrenaline release and its presynaptic muscarinic regulation, Pharmacol. Res., 2002, vol. 45, no. 3, p. 221.

    Article  CAS  PubMed  Google Scholar 

  59. Verbeuren, T.J., Janssens, W.J., van Houtte, P.M., Effects of moderate acidosis on adrenergic neurotransmission in canine saphenous veins, J. Pharmacol. Exp. Ther., 1978, vol. 206, no. 1, p. 105.

    CAS  PubMed  Google Scholar 

  60. Hansen, T., Tarasova, O.S., Khammy, M.M., et al., [Ca2+] changes in sympathetic varicosities and Schwann cells in rat mesenteric arteries—relation to noradrenaline release and contraction, Acta Physiol. (Oxford), 2019, vol. 226, no. 4, p. e13279.

    Article  Google Scholar 

  61. Tombaugh, G.C. and Somjen, G.G., Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons, J. Physiol., 1996, vol. 493, part 3, p. 719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zefirov, A.L., Mukhametzyanov, R.D., Zakharov, A.V., et al., Intracellular acidification suppresses synaptic vesicle mobilization in the motor nerve terminals, Acta Nat., 2020, vol. 12, no. 4, p. 105.

    Article  CAS  Google Scholar 

  63. Sinoway, L.I. and Li, J., A perspective on the muscle reflex: implications for congestive heart failure, J. Appl. Physiol., 2005, vol. 99, no. 1, p. 5.

    Article  CAS  PubMed  Google Scholar 

  64. Kaufman, M.P., Longhurst, J.C., Rybicki, K.J., et al., Effects of static muscular contraction on impulse activity of groups III and IV afferents in cats, J. Appl. Phys-iol., 1983, vol. 55, no. 1, part 1, p. 105.

  65. Hayes, S.G., Kindig, A.E., and Kaufman, M.P., Blockade of acid sensing ion channels attenuates the exercise pressor reflex in cats, J. Physiol., 2007, vol. 581, part 3, p. 1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Campos, M.O., Mansur, D.E., Mattos, J.D., et al., Acid-sensing ion channels blockade attenuates pressor and sympathetic responses to skeletal muscle metaboreflex activation in humans, J. Appl. Physiol., 2019, vol. 127, no. 5, p. 1491.

    Article  CAS  PubMed  Google Scholar 

  67. Ducrocq, G.P., Kim, J.S., Estrada, J.A., and Kaufman, M.P., ASIC1a plays a key role in evoking the metabolic component of the exercise pressor reflex in rats, Am. J. Physiol.: Heart. Circ. Physiol., 2020, vol. 318, no. 1, p. H78.

    CAS  PubMed  Google Scholar 

  68. Caterina, M.J. and Julius, D., The vanilloid receptor: a molecular gateway to the pain pathway, Ann. Rev. Neurosci., 2001, vol. 24, p. 487.

    Article  CAS  PubMed  Google Scholar 

  69. Smith, S.A., Leal, A.K., Williams, M.A., et al., The TRPv1 receptor is a mediator of the exercise pressor reflex in rats, J. Physiol., 2010, vol. 588, part 7, p. 1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mannozzi, J., Al-Hassan, M.H., Lessanework, B., et al., Chronic ablation of TRPV1-sensitive skeletal muscle afferents attenuates the muscle metaboreflex, Am. J. Physiol.: Regul. Integr. Comp. Physiol., 2021, vol. 321, no. 3, p. R385.

    CAS  PubMed  Google Scholar 

  71. Notay, K., Klingel, S.L., Lee, J.B., et al., TRPV1 and BDKRB2 receptor polymorphisms can influence the exercise pressor reflex, J. Physiol., 2018, vol. 596, no. 21, p. 5135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 21-75-10 036 for D.K. Gainullina and A.A. Shvetsova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Gainullina.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by E. Babchenko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gainullina, D.K., Shvetsova, A.A. & Tarasova, O.S. Mechanisms of the Acidosis Effect on Vascular Tone. Hum Physiol 49, 837–844 (2023). https://doi.org/10.1134/S0362119723070046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119723070046

Keywords:

Navigation