Log in

Brain Functional Connectivity in Mentally Healthy Individuals with Different Levels of Schizotypy

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

Schizotypy, a set of behavioral traits related to an enhanced risk for mental disorders, is an informative model for the investigation of early predisposition markers. We aimed to analyze correlations between the characteristics of functional brain organization and schizotypy in mentally healthy individuals. Mentally healthy participants (N = 80 in the main sample and N = 32 in the replication sample) underwent resting-state fMRI and Schizotypal Personality Questionnaire (SPQ-74). Correlations between functional connectivity (FC) within and between the brain neuronal networks and four factors of schizotypy were analyzed. Additionally, we tested the whole-brain FC of the right medial frontal cortex for correlations with schizotypy (the region of interest was chosen on the basis of multicenter study of schizotypy associations with brain anatomy). Statistically significant results were tested in the replication sample. The FC within the ventral attention/salience network correlated with negative schizotypy, whilst the FC within the default mode network was associated with disorganization schizotypy (the results did not survive the correction for multiple analyses). Lower FC between the right medial frontal cortex and a temporal-occipital region in the left hemisphere correlated with higher cognitive-perceptual schizotypy, which may reflect deviations in emotional and motivational mediation of visual perception. These results, however, were not replicated in the second sample. Further research in this direction should engage larger samples and take into account a wider spectrum of parameters (psychometric, neuropsychological, and neuroimaging).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. This sample was not identical to but substantially overlapped with a sample of 81 subjects whose resting-state fMRI data were obtained earlier with our participation in the project funded by Russian Foundation for Basic Research (RFBR) grant 18-00-01598 (18-00-01592) and are publicly available at https://openneuro.org/datasets/ds003469.

  2. The visual network was not included in the analysis as different instructions were used for the main and replication samples, with open versus closed eyes.

  3. ROI = region of interest.

REFERENCES

  1. Venables, P.H. and Raine, A., The stability of schizotypy across time and instruments, Psychiatry Res., 2015, vol. 228, no. 3, p. 585.

    PubMed  PubMed Central  Google Scholar 

  2. Barrantes-Vidal, N., Grant, P., and Kwapil, T.R., The role of schizotypy in the study of the etiology of schizophrenia spectrum disorders, Schizophr. Bull., 2015, vol. 41, suppl. 2, p. S408.

    PubMed  PubMed Central  Google Scholar 

  3. Alfimova, M.V., Lezheiko, T.V., Sergeev, N.V. et al., Structure of schizotypal traits in the Russian population, Zh. Nevrol. Psikhiatrii im. S. S. Korsakova, 2020, vol. 120, no. 7, p. 94.

    CAS  Google Scholar 

  4. Racioppi, A., Sheinbaum, T., Gross, G.M., et al., Prediction of prodromal symptoms and schizophrenia-spectrum personality disorder traits by positive and negative schizotypy: a 3-year prospective study, PLoS One, 2018, vol. 13, no. 11. e0207150

    PubMed  PubMed Central  Google Scholar 

  5. Lenzenweger, M.F., Schizotypy 17 years on: psychotic symptoms in midlife, J. Abnorm. Psychol., 2021, vol. 130, no. 4, p. 399.

    PubMed  Google Scholar 

  6. Zhao, W., Guo, S., Linli, Z., et al., Functional, anatomical, and morphological networks highlight the role of basal ganglia—thalamus—cortex circuits in schizophrenia, Schizophr. Bull., 2020, vol. 46, no. 2, p. 422.

    PubMed  Google Scholar 

  7. Waltmann, M., O’Daly, O., Egerton, A., et al., Multi-echo fMRI, resting-state connectivity, and high psychometric schizotypy, NeuroImage Clin., 2019, vol. 21, p. 101603.

    PubMed  Google Scholar 

  8. Kozhuharova, P., Saviola, F., Diaconescu, A., and Allen, P., High schizotypy traits are associated with reduced hippocampal resting state functional connectivity, Psychiatry Res. Neuroimaging, 2021, vol. 307, p. 111215.

    Google Scholar 

  9. Pettersson-Yeo, W., Allen, P., Benetti, S. et al., Dysconnectivity in schizophrenia: where are we now? Neurosci. Biobehav. Rev., 2011, vol. 35, no. 5, p. 1110.

    PubMed  Google Scholar 

  10. Wang, Y., Ettinger, U., Meindl, T., and Chan, R.C.K., Association of schizotypy with striatocortical functional connectivity and its asymmetry in healthy adults, Hum. Brain. Mapp., 2018, vol. 39, no. 1, p. 288.

    PubMed  Google Scholar 

  11. Wang, L.L., Sun, X., Chiu, C.D., et al., Altered cortico-striatal functional connectivity in people with high levels of schizotypy: a longitudinal resting-state study, Asian J. Psychiatr., 2021, vol. 58, p. 102621.

    PubMed  Google Scholar 

  12. Lagioia, A., Van De Ville, D., Debbane, M. et al., Adolescent resting state networks and their associations with schizotypal trait expression, Front. Syst. Neurosci., 2010, vol. 4., p. 35.

    PubMed  PubMed Central  Google Scholar 

  13. Wang, Y.M., Cai, X.L., Zhang, R.T., et al., Altered brain structural and functional connectivity in schizotypy, Psychol. Med., 2020, vol. 52, no. 5, p. 834.

    PubMed  Google Scholar 

  14. Wang, Y.M., Cai, X.L., Zhou, H.Y., et al., Altered default mode network functional connectivity in individuals with co-occurrence of schizotypy and obsessive-compulsive traits, Psychiatry Res. Neuroimaging, 2020, vol. 305, p. 111170.

    PubMed  Google Scholar 

  15. Wang, Y., Yan, C., Yin, D.Z., et al., Neurobiological changes of schizotypy: evidence from both volume-based morphometric analysis and resting-state functional connectivity, Schizophr. Bull., 2015, vol. 41, sup-pl. 2, p. S444.

    PubMed  Google Scholar 

  16. Kirschner, M., Hodzic-Santor, B., Antoniades, M., et al., Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study, Mol. Psychiatry, 2021, vol. 27, no. 2, p. 1167.

    PubMed  PubMed Central  Google Scholar 

  17. Raine, A., Reynolds, C., Lencz, T., et al., Cognitive-perceptual, interpersonal, and disorganized features of schizotypal personality, Schizophr. Bull., 1994, vol. 20, no. 1, p. 191.

    CAS  PubMed  Google Scholar 

  18. Efremov, A.G. and Enikolopov, S.N., The approbation of the Cloninger’s biosocial temperament and character inventory (TCI-125) and the schizotypal personality questionnaire (SPQ-74), Vestn. Mosk. Gos. Univ., Ser. 14: Psikhol., 2002, vol. 1, p. 92.

    Google Scholar 

  19. Stefanis, N.C., Smyrnis, N., Avramopoulos, D., et al., Factorial composition of self-rated schizotypal traits among young males undergoing military training, Schizophr. Bull., 2004, vol. 30, no. 2, p. 335.

    PubMed  Google Scholar 

  20. Hanaie, R., Mohri, I., Kagitani-Shimono, K., et al., Aberrant cerebellar-cerebral functional connectivity in children and adolescents with autism spectrum disorder, Front. Hum. Neurosci., 2018, vol. 12, p. 454.

    PubMed  PubMed Central  Google Scholar 

  21. Yoo, K., Rosenberg, M.D., Hsu, W.T., et al., Connectome-based predictive modeling of attention: comparing different functional connectivity features and prediction methods across datasets, NeuroImage, 2018, vol. 167, p. 11.

    PubMed  Google Scholar 

  22. Ren, J., Hubbard, C.S., Ahveninen, J., et al., Dissociable auditory cortico-cerebellar pathways in the human brain estimated by intrinsic functional connectivity, Cereb. Cortex, 2021, vol. 31, no. 6, p. 2898.

    PubMed  PubMed Central  Google Scholar 

  23. Yeo, B.T., Krienen, F.M., Sepulcre, J., et al., The organization of the human cerebral cortex estimated by intrinsic functional connectivity, J. Neurophysiol., 2011, vol. 106, no. 3, p. 1125.

    PubMed  Google Scholar 

  24. Desikan, R.S., Segonne, F., Fischl, B., et al., An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage, 2006, vol. 31, no. 3, p. 968.

    PubMed  Google Scholar 

  25. Grant, P., Is schizotypy per se a suitable endophenotype of schizophrenia? Do not forget to distinguish positive from negative facets, Front. Psychiatry., 2015, vol. 6, p. 143.

    PubMed  PubMed Central  Google Scholar 

  26. Spechler, P.A., Chaarani, B., Orr, C., et al., Neuroimaging evidence for right orbitofrontal cortex differences in adolescents with emotional and behavioral dysregulation, J. Am. Acad. Child Adolesc. Psychiatry, 2019, vol. 58, no. 11, p. 1092.

    PubMed  Google Scholar 

  27. Nejati, V., Salehinejad, M.A., and Nitsche, M.A., Interaction of the left dorsolateral prefrontal cortex (l-DLPFC) and right orbitofrontal cortex (OFC) in hot and cold executive functions: evidence from transcranial direct current stimulation (tDCS), Neuroscience, 2018, vol. 369, p. 109.

    CAS  PubMed  Google Scholar 

  28. Rudebeck, P.H. and Rich, E.L., Orbitofrontal cortex, Curr. Biol., 2018, vol. 28, no. 18, p. R1083.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Conway, B.R., The organization and operation of inferior temporal cortex, Annu. Rev. Vis. Sci., 2018, vol. 4, p. 381.

    PubMed  PubMed Central  Google Scholar 

  30. Weiner, K.S., Zilles, K., The anatomical and functional specialization of the fusiform gyrus, Neuropsychologia, 2016, vol. 83, p. 48.

    PubMed  Google Scholar 

  31. Zeng, H., Fink, G.R., Weidner, R., Visual size processing in early visual cortex follows lateral occipital cortex involvement, J. Neurosci., 2020, vol. 40, no. 22, p. 4410.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cicero, D.C. and Kerns, J.G., Can disorganized and positive schizotypy be discriminated from dissociation? J. Pers., 2010, vol. 78, no. 4, p. 1239.

    PubMed  Google Scholar 

  33. Smallwood, J., Bernhardt, B. C., Leech, R., et al., The default mode network in cognition: a topographical perspective, Nat. Rev. Neurosci., 2021, vol. 22, no. 8, p. 503.

    CAS  PubMed  Google Scholar 

  34. Kwapil, T.R., Brown, L.H., Silvia, P.J., et al., The expression of positive and negative schizotypy in daily life: an experience sampling study, Psychol. Med., 2012, vol. 42, no. 12, p. 2555.

    CAS  PubMed  Google Scholar 

  35. Uddin, L.Q., Salience processing and insular cortical function and dysfunction, Nat. Rev. Neurosci., 2015, vol. 16, no. 1, p. 55.

    CAS  PubMed  Google Scholar 

  36. Rosen, M.L., Sheridan, M.A., Sambrook, K.A., et al., Salience network response to changes in emotional expressions of others is heightened during early adolescence: relevance for social functioning, Dev. Sci., 2018, vol. 21, no. 3, p. e12571.

    PubMed  Google Scholar 

  37. Pisoni, A., Davis, S.W., and Smoski, M., Neural signatures of saliency-map** in anhedonia: a narrative review, Psychiatry Res., 2021, vol. 304, p. 114123.

    PubMed  PubMed Central  Google Scholar 

  38. Limongi, R., Jeon, P., Mackinley, M., et al., Glutamate and disconnection in the salience network: neurochemical, effective connectivity, and computational evidence in schizophrenia, Biol. Psychiatry, 2020, vol. 88, no. 3, p. 273.

    CAS  PubMed  Google Scholar 

  39. Dong, D., Wang, Y., Chang, X., et al., Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity, Schizophr. Bull., 2018, vol. 44, no. 1, p. 168.

    PubMed  Google Scholar 

  40. Amico, F., O’Hanlon, E., Kraft, D., et al., Functional connectivity anomalies in adolescents with psychotic symptoms, PLoS One., 2017, vol. 12, no. 1. e0169364

    PubMed  PubMed Central  Google Scholar 

  41. Hur, J.W., Kim, T., Cho, K.I.K., and Kwon, J.S., Attenuated resting-state functional anticorrelation between attention and executive control networks in schizotypal personality disorder, J. Clin. Med., 2021, vol. 10, no. 2, p. 312.

    PubMed  PubMed Central  Google Scholar 

  42. Fonseca-Pedrero, E., Lemos-Giraldez, S., Muniz, J., et al., Schizotypy in adolescence: the role of gender and age, J. Nerv. Ment. Dis., 2008, vol. 196, no. 2, p. 161.

    PubMed  Google Scholar 

  43. Bora, E. and Baysan Arabaci, L., Effect of age and gender on schizotypal personality traits in the normal population, Psychiatry Clin. Neurosci., 2009, v. 63, no. 5, p. 663.

    PubMed  Google Scholar 

  44. Filippi, M., Valsasina, P., Misci, P., et al., The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects, Hum. Brain. Mapp., 2013, vol. 34, no. 6, p. 1330.

    PubMed  Google Scholar 

  45. Zhang, C., Cahill, N.D., Arbabshirani, M.R., et al., Sex and age effects of functional connectivity in early adulthood, Brain Connect., 2016, vol. 6, no. 9, p. 700.

    PubMed  PubMed Central  Google Scholar 

  46. Weissman-Fogel, I., Moayedi, M., Taylor, K.S., et al., Cognitive and default-mode resting state networks: do male and female brains “rest” differently? Hum. Brain Mapp., 2010, vol. 31, no. 11, p. 1713.

    PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the radiologists Daria Bazhenova and Anastasiya Suslina.

Funding

The study was supported by the Russian Foundation for Basic Research (RFBR) grant 20-013-00748, a part of the work was supported by the RFBR grant 18-00-01598 (18-00-01592).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina S. Lebedeva.

Ethics declarations

All examinations were carried out according to the principles of biomedical ethics and approved by the Interuniversity Ethics Committee of Moscow.

INFORMED CONSENT

Each participant of the study gave a voluntary written informed consent signed after the explanation of potential risks and benefits as well as the details of further examination.

CONFLICT OF INTERESTS

The authors declare no apparent or potential conflicts of interest related to publication of the current article.

IMPACT OF EACH AUTHOR TO THE ARTICLE

All authors wereinvolved in the preparation of the article’s text. Irina S. Lebedeva developed the concept of the study and organized the study. Yana R. Panikratova analyzed the fMRI and SPQ data. Ekaterina V. Pechenkova organized the study and provided guidance on the analysis techniques.va and Anastasiya Suslina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, I.S., Panikratova, Y.R. & Pechenkova, E.V. Brain Functional Connectivity in Mentally Healthy Individuals with Different Levels of Schizotypy. Hum Physiol 48, 487–495 (2022). https://doi.org/10.1134/S0362119722700013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119722700013

Keywords:

Navigation