Log in

Performances of Different Machine Learning Algorithms for Predicting Saltwater Intrusion in the Vietnamese Mekong Delta Using Limited Input Data: A Study from Ham Luong River

  • WATER RESOURCES AND THE REGIME OF WATER BODIES
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Accurate forecasting of salinity intrusion has a vital role in water resource management to mitigate and prevent its adverse effects. However, monitoring of salinity presents great challenges because the task requires a number of information, such as hydrological, geomorphological data. The objective of this paper is to compare the performances of different machine learning algorithms for saltwater intrusion prediction using a limited number of input data. To achieve this goal, we tested the performances of five algorithms (i.e., Simple Linear, K-Nearest Neighbors, Random Forest, Support Vector Machine and a deep learning algorithm Long Short Term Memory) for predicting saltwater intrusion in the Ham Luong River in the Vietnamese Mekong Delta using only salinity monitoring data. We used Nash−Sutcliffe efficiency coefficient, Mean Absolute Error, and Root Mean Square Error to evaluate the performances of the above mentioned five models. Our results showed that Long Short Term Memory was the most accurate and efficient model, which implies that deep learning algorithms might be more efficient than machine learning algorithms in case of limited input data. Besides, the study also showed that performance of the linear model was insignificant compared to the non-linear algorithms. The results also revealed that saltwater intrusion forecasts could be achieved even in the limited data context. The present study provided a precise and simple tool for early warning of saltwater intrusion in the Vietnamese Mekong Delta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Alsharif, M.H., Younes, M.K., and Kim, J., Time series ARIMA model for prediction of daily and monthly average global solar radiation: The case study of Seoul, South Korea, Symmetry, 2019, vol. 11, p. 240.

    Article  Google Scholar 

  2. Apel, H., Khiem, M., Quan, N.H., and Toan, T.Q., Brief communication: Seasonal prediction of salinity intrusion in the Mekong Delta, Nat. Hazards Earth Syst. Sci., 2020, vol. 20, pp. 1609−1616.

    Article  Google Scholar 

  3. Becker, M.L., Luettich Jr, R.A., and Mallin, M.A., Hydrodynamic behavior of the Cape Fear River and estuarine system: A synthesis and observational investigation of discharge–salinity intrusion relationships, Estuar. Coast. Shelf Sci., 2010, vol. 88, pp. 407−418.

    Article  Google Scholar 

  4. Choubin, B., Khalighi-Sigaroodi, S., Malekian, A., and Kişi, Ö., Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals, Hydrol. Sci. J., 2016, vol. 61, pp. 1001−1009.

    Article  Google Scholar 

  5. Dang T.M. and De Smedt, F., A combined hydrological and hydraulic model for flood prediction in Vietnam applied to the Huong River basin as a test case study, Water, 2017, vol. 9, pp. 879.

    Article  Google Scholar 

  6. Doan V.B., Kantoush, S.A., Saber, M., Mai, N.P., Maskey, S., Phong, D.T., and Sumi, T., Long-term alterations of flow regimes of the Mekong River and adaptation strategies for the Vietnamese Mekong Delta, J. Hydrol. Reg. Stud., 2020, vol. 32, pp. 100742.

    Article  Google Scholar 

  7. Eslami, S., Hoekstra, P., Nguyen T.N., Ahmed K. S., Doan V.B., Do, D.D., Tran, Q.T., and Vegt, van der M., Tidal amplification and salt intrusion in the Mekong Delta driven by anthropogenic sediment starvation, Sci. Rep., 2019, vol. 9, pp. 18 746−18 755.

    Article  Google Scholar 

  8. Frigge, M., Hoaglin, D.C., and Iglewicz, B., Some implementations of the boxplot, Am. Stat., 1989, vol. 43, pp. 50−54.

    Google Scholar 

  9. General Statistics Office (GSO), Statistical Handbook of Vietnam 2015, General Statistics Office of Viet Nam, 2015.

    Google Scholar 

  10. Hochreiter, S., The vanishing gradient problem during learning recurrent neural nets and problem solutions, Int. J. Uncertain. Fuzziness Knowledge-Based Syst., 1998, vol. 6, pp. 107−116.

    Article  Google Scholar 

  11. https://scikit-learn.org/stable/

  12. https://www.python.org/

  13. https://www.tensorflow.org/guide/keras/rnn

  14. Hunter, J.M., Maier, H.R., Gibbs, M.S., Foale, E.R., Grosvenor, N.A., Harders, N.P., and Kikuchi-Miller, T.C., Framework for develo** hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems, Hydrol. Earth Syst. Sci., 2018, vol. 22, pp. 2987−3006.

    Article  Google Scholar 

  15. Kornelsen, K. and Coulibaly, P., Comparison of interpolation, statistical, and data-driven methods for imputation of missing values in a distributed soil moisture dataset, J. Hydrol. Eng., 2014, vol. 19, pp. 26−43.

    Article  Google Scholar 

  16. Khang, D.K., Kotera, A., Sakamoto, T., and Yokozawa, M., Sensitivity of salinity intrusion to sea level rise and river flow change in Vietnamese Mekong Delta impacts on availability of irrigation water for rice crop**, J. Agric. Meteorol., 2008, vol. 64, pp. 167–176.

    Article  Google Scholar 

  17. Lago, J., De Ridder, F., and De Schutter, B., Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms, Appl. Energy, 2015, vol. 221, pp. 386−405.

    Article  Google Scholar 

  18. Lal, A. and Datta, B., Application of the group method of data handling and variable importance analysis for prediction and modelling of saltwater intrusion processes in coastal aquifers, Neural. Comput. Appl., 2020, vol. 33, pp. 4179−4190.

    Article  Google Scholar 

  19. Liang, Z., Zou, R., Chen, X., Ren, T., Su, H., and Liu, Y., Simulate the forecast capacity of a complicated water quality model using the long short-term memory approach, J. Hydrol., 2020, vol. 581, pp. 124432.

    Article  Google Scholar 

  20. Moriasi, D.N., Gitau, M.W., Pai, N., and Daggupati, P., Hydrologic and water quality models: Performance measures and evaluation criteria, Trans. ASABE, 2015, vol. 58, pp. 1763−1785.

    Article  Google Scholar 

  21. Nash, J.E. and Sutcliffe, J.V., River flow forecasting through conceptual models, part I—a discussion of principles, J. Hydrol., 1970, vol. 10, pp. 282–290.

    Article  Google Scholar 

  22. Nguyen, P.M., Kantoush, S., Sumi, T., Thang, T.D., Trung, L.V., and Binh, D.V., Assessing and adapting the impacts of dams’ operation and sea level rising on saltwater intrusion into the Vietnamese Mekong Delta, J. Jpn. Soc. Civ. Eng. Ser. B1, 2018, vol. 74, pp. 373−378.

    Google Scholar 

  23. Nguyen, X.H., Nguyen, K.D., and Trung, L.D., Assessing the adaptive capacity of farmers under the impact of saltwater intrusion in the Vietnamese Mekong Delta, J. Environ. Plan. Manag., 2019, vol. 62, pp. 1619−1635.

    Article  Google Scholar 

  24. Palani, S., Liong, S.Y., and Tkalich, P., An ANN application for water quality forecasting, Mar. Pollut. Bull., 2008, vol. 56, pp. 1586−1597.

    Article  Google Scholar 

  25. Passeri, D.L., Hagen, S.C., Medeiros, S.C., Bilskie, M.V., Alizad, K., and Wang, D., The dynamic effects of sea level rise on low-gradient coastal landscapes: A review, Earth’s Future, 2015, vol. 3, pp. 159−181.

    Article  Google Scholar 

  26. Phan, T.T.H. and Nguyen, X.H., Combining statistical machine learning models with ARIMA for water level forecasting: The case of the Red river, Adv. Water Resour., 2020, vol. 142, pp. 103 656−103 692.

    Article  Google Scholar 

  27. Qin, M., Li, Z., and Du, Z., Red tide time series forecasting by combining ARIMA and deep belief network, Knowl. Based Syst., 2017, vol. 125, pp. 39−52.

    Article  Google Scholar 

  28. Rahman, M.H., Lund, T., and Bryceson, I., Salinity impacts on agro-biodiversity in three coastal, rural villages of Bangladesh, Ocean Coast. Manag., 2011, vol. 54, pp. 455–468.

    Article  Google Scholar 

  29. Robertson, W.M. and Sharp, J.M., Estimates of recharge in two arid basin aquifers: a model of spatially variable net infiltration and its implications (Red Light Draw and Eagle Flats, Texas, USA), Hydrogeol. J., 2013, vol. 21, pp. 1853−1864.

    Article  Google Scholar 

  30. Ross, A.C. and Stock, C.A., An assessment of the predictability of column minimum dissolved oxygen concentrations in Chesapeake Bay using a machine learning model, Estuar. Coast. Shelf Sci., 2019, vol. 221, pp. 53−65.

    Article  Google Scholar 

  31. Schmidt, A., Mainwaring, D.B., and Maguire, D.A., Development of a tailored combination of machine learning approaches to model volumetric soil water content within a mesic forest in the Pacific Northwest, J. Hydrol., 2020, vol. 588, pp. 125044.

    Article  Google Scholar 

  32. To, Q.T., Climate Change and Sea Level Rise in the Mekong Delta: Flood, Tidal Inundation, Salinity Intrusion, and Irrigation Adaptation Methods, in Coastal Disasters and Climate Change in Vietnam, Oxford: Elsevier, 2014, pp. 199–218.

    Google Scholar 

  33. Thoi, N.H. and Gupta, A.D., Assessment of water resources and salinity intrusion in the Mekong Delta, Water Int., 2001, vol. 26, pp. 86–95.

    Article  Google Scholar 

  34. Tran A.D., Hoang, L.P., Bui, M.D., and Rutschmann, P., Simulating future flows and salinity intrusion using combined one- and two-dimensional hydrodynamic modelling-the case of Hau River, Vietnamese Mekong Delta, Water, 2018, vol. 10, pp. 897–917.

    Article  Google Scholar 

  35. Tran, T.T., Ngo, Q.X., Ha, H.H., and Nguyen, N.P., Short-term forecasting of salinity intrusion in Ham Luong river, Ben Tre province using Simple Exponential Smoothing method, J. Viet. Env., 2019, vol. 11, pp. 43–50.

    Article  Google Scholar 

  36. Uncles, R.J. and Stephens, J.A., The effects of wind, runoff and tides on salinity in a strongly tidal sub-estuary, Estuar. Coast., 2011, vol. 34, pp. 758–774.

    Article  Google Scholar 

  37. Wolff, S., O’Donncha, F., and Chen, B., Statistical and machine learning ensemble modelling to forecast sea surface temperature, J. Mar. Syst., 2020, vol. 208, pp. 103347.

    Article  Google Scholar 

  38. Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J., Develo** a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas, J. Hydrol., 2018, vol. 561, pp. 918–929.

    Article  Google Scholar 

Download references

Funding

This study was funded by the Thu Dau Mot University under grant number “DT.21.2-036.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Pham.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.T., Pham, N.H., Pham, Q.B. et al. Performances of Different Machine Learning Algorithms for Predicting Saltwater Intrusion in the Vietnamese Mekong Delta Using Limited Input Data: A Study from Ham Luong River. Water Resour 49, 391–401 (2022). https://doi.org/10.1134/S0097807822030198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807822030198

Keywords:

Navigation