Log in

On Time-Dependent Projectors and a Generalization of the Thermodynamical Approach in the Theory of Open Quantum Systems

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We develop a consistent perturbative technique for obtaining a time-local linear master equation based on projection methods in the case where the projection operator depends on time. Then we introduce a generalization of the Kawasaki–Gunton projection operator, which allows us to use this technique to derive, generally speaking, nonlinear master equations in the case of arbitrary ansatzes consistent with some set of observables. Most of the results obtained are of a very general nature, but when discussing them, we put emphasis on the application of these results to the theory of open quantum systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

References

  1. L. Accardi, S. V. Kozyrev, and A. N. Pechen, “Coherent quantum control of \(\Lambda \)-atoms through the stochastic limit,” in Quantum Information and Computing: Int. Conf. on Quantum Information, Tokyo, 2003, Ed. by L. Accardi, M. Ohya, and N. Watanabe (World Scientific, Hackensack, NJ, 2006), QP–PQ: Quantum Probab. White Noise Anal. 19, pp. 1–17.

    Chapter  Google Scholar 

  2. L. Accardi, Y. G. Lu, and I. Volovich, Quantum Theory and Its Stochastic Limit (Springer, Berlin, 2002).

    Book  Google Scholar 

  3. P. N. Argyres and P. L. Kelley, “Theory of spin resonance and relaxation,” Phys. Rev. 134 (1A), 98–111 (1964).

    Article  Google Scholar 

  4. M. Baake and U. Schlaegel, “The Peano–Baker Series,” Proc. Steklov Inst. Math. 275, 155–159 (2011).

    Article  MathSciNet  Google Scholar 

  5. T. N. Bakiev, D. V. Nakashidze, and A. M. Savchenko, “Certain relations in statistical physics based on Rényi entropy,” Moscow Univ. Phys. Bull. 75 (6), 559–569 (2020) [transl. from Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 6, 45–54 (2020)].

    Article  Google Scholar 

  6. A. M. Basharov, “The effective Hamiltonian as a necessary basis of the open quantum optical system theory,” J. Phys.: Conf. Ser. 1890, 012001 (2021).

    Google Scholar 

  7. A. G. Bashkirov, “Renyi entropy as a statistical entropy for complex systems,” Theor. Math. Phys. 149 (2), 1559–1573 (2006) [transl. from Teor. Mat. Fiz. 149 (2), 299–317 (2006)].

    Article  MathSciNet  Google Scholar 

  8. R. A. Bertlmann and P. Krammer, “Bloch vectors for qudits,” J. Phys. A: Math. Theor. 41 (23), 235303 (2008).

    Article  MathSciNet  Google Scholar 

  9. N. N. Bogoliubov, Problems of Dynamic Theory in Statistical Physics (Argonne Natl. Lab., US Atomic Energy Commission, Lemont, IL, 1960) [transl. from Russian (Gostekhizdat, Moscow, 1946)].

    Google Scholar 

  10. L.-S. Bouchard, “Mori–Zwanzig equations with time-dependent Liouvillian,” ar**v: 0709.1358 [physics.chem-ph].

  11. H.-P. Breuer, “Non-Markovian generalization of the Lindblad theory of open quantum systems,” Phys. Rev. A. 75 (2), 022103 (2007).

    Article  MathSciNet  Google Scholar 

  12. H.-P. Breuer, J. Gemmer, and M. Michel, “Non-Markovian quantum dynamics: Correlated projection superoperators and Hilbert space averaging,” Phys. Rev. E 73 (1), 016139 (2006).

    Article  MathSciNet  Google Scholar 

  13. H.-P. Breuer, B. Kappler, and F. Petruccione, “Stochastic wave-function method for non-Markovian quantum master equations,” Phys. Rev. A 59 (2), 1633–1643 (1999).

    Article  Google Scholar 

  14. H.-P. Breuer, B. Kappler, and F. Petruccione, “The time-convolutionless projection operator technique in the quantum theory of dissipation and decoherence,” Ann. Phys. 291 (1), 36–70 (2001).

    Article  MathSciNet  Google Scholar 

  15. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford Univ. Press, Oxford, 2007).

    Book  Google Scholar 

  16. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).

    Google Scholar 

  17. E. B. Davies, “Markovian master equations,” Commun. Math. Phys. 39 (2), 91–110 (1974).

    Article  MathSciNet  Google Scholar 

  18. G. De Palma, A. Mari, V. Giovannetti, and A. S. Holevo, “Normal form decomposition for Gaussian-to-Gaussian superoperators,” J. Math. Phys. 56 (5), 052202 (2015).

    Article  MathSciNet  Google Scholar 

  19. V. V. Dodonov and V. I. Man’ko, “Evolution equations for the density matrices of linear open systems,” in Classical and Quantum Effects in Electrodynamics (Nova Sci. Publ., Commak, NY, 1988), pp. 53–60 [transl. from Tr. Fiz. Inst. Akad. Nauk 176, 40–45 (1986)].

    Google Scholar 

  20. E. Fick and G. Sauermann, The Quantum Statistics of Dynamic Processes (Springer, Berlin, 1990), Springer Ser. Solid-State Sci. 86.

    Google Scholar 

  21. G. Gasbarri and L. Ferialdi, “Recursive approach for non-Markovian time-convolutionless master equations,” Phys. Rev. A 97 (2), 022114 (2018).

    Article  Google Scholar 

  22. T. Heinosaari, A. S. Holevo, and M. M. Wolf, “The semigroup structure of Gaussian channels,” Quantum Inf. Comput. 10 (7–8), 619–635 (2010).

    MathSciNet  Google Scholar 

  23. E. Hinds Mingo, Y. Guryanova, P. Faist, and D. Jennings, “Quantum thermodynamics with multiple conserved quantities,” in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions (Springer, Cham, 2018), pp. 751–771.

    Chapter  Google Scholar 

  24. A. S. Holevo, Statistical Structure of Quantum Theory (Springer, Berlin, 2001).

    Book  Google Scholar 

  25. A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed. (De Gruyter, Berlin, 2019) [transl. from Russian (MTsNMO, Moscow, 2010)].

    Book  Google Scholar 

  26. A. S. Holevo, Mathematical Foundations of Quantum Informatics (Steklov Math. Inst., Moscow, 2018), Lekts. Kursy Nauchno-Obrazov. Tsentra 30.

    Google Scholar 

  27. E. T. Jaynes, “Information theory and statistical mechanics. II,” Phys. Rev. 108 (2), 171–190 (1957).

    Article  MathSciNet  Google Scholar 

  28. A. Yu. Karasev and A. E. Teretenkov, “Time-convolutionless master equations for composite open quantum systems,” Lobachevskii J. Math. 44 (6), 2051–2064 (2023).

    Article  MathSciNet  Google Scholar 

  29. A. Kato, “On reduced dynamics of quantum-thermodynamical systems,” Diss. (Techn. Univ. Berlin, Berlin, 2004).

    Google Scholar 

  30. A. Kato, M. Kaufmann, W. Muschik, and D. Schirrmeister, “Different dynamics and entropy rates in quantum-thermodynamics,” J. Non-Equilib. Thermodyn. 25 (1), 63–86 (2000).

    Article  Google Scholar 

  31. K. Kawasaki and J. D. Gunton, “Theory of nonlinear transport processes: Nonlinear shear viscosity and normal stress effects,” Phys. Rev. A 8 (4), 2048–2064 (1973).

    Article  Google Scholar 

  32. R. Kubo, “Stochastic Liouville equations,” J. Math. Phys. 4 (2), 174–183 (1963).

    Article  MathSciNet  Google Scholar 

  33. L. Lokutsievskiy and A. Pechen, “Reachable sets for two-level open quantum systems driven by coherent and incoherent controls,” J. Phys. A: Math. Theor. 54 (39), 395304 (2021).

    Article  MathSciNet  Google Scholar 

  34. V. F. Los, “Time-dependent projection operator and nonlinear generalized master equations,” Phys. Rev. E 106 (3), 034107 (2022).

    Article  MathSciNet  Google Scholar 

  35. H. Mori, “A continued-fraction representation of the time-correlation functions,” Prog. Theor. Phys. 34 (3), 399–416 (1965).

    Article  MathSciNet  Google Scholar 

  36. T. Mori, “Floquet states in open quantum systems,” Annu. Rev. Condens. Matter Phys. 14, 35–56 (2023).

    Article  Google Scholar 

  37. O. V. Morzhin and A. N. Pechen, “Numerical estimation of reachable and controllability sets for a two-level open quantum system driven by coherent and incoherent controls,” AIP Conf. Proc. 2362, 060003 (2021).

    Article  Google Scholar 

  38. S. Nakajima, “On quantum theory of transport phenomena: Steady diffusion,” Prog. Theor. Phys. 20 (6), 948–959 (1958).

    Article  MathSciNet  Google Scholar 

  39. K. Nestmann and C. Timm, “Time-convolutionless master equation: Perturbative expansions to arbitrary order and application to quantum dots,” ar**v: 1903.05132 [cond-mat.mes-hall].

  40. V. N. Petruhanov and A. N. Pechen, “Quantum gate generation in two-level open quantum systems by coherent and incoherent photons found with gradient search,” Photonics 10 (2), 220 (2023).

    Article  Google Scholar 

  41. J. Rau and B. Müller, “From reversible quantum microdynamics to irreversible quantum transport,” Phys. Rep. 272 (1), 1–59 (1996).

    Article  MathSciNet  Google Scholar 

  42. B. Robertson, “Equations of motion in nonequilibrium statistical mechanics,” Phys. Rev. 144 (1), 151–161 (1966).

    Article  MathSciNet  Google Scholar 

  43. J. Seke, “Equations of motion in nonequilibrium statistical mechanics of open systems,” Phys. Rev. A 21 (6), 2156–2165 (1980).

    Article  MathSciNet  Google Scholar 

  44. V. Semin and F. Petruccione, “Projection operators in the theory of open quantum systems,” in Proc. 60th Annu. Conf. South Afr. Inst. Phys. (SAIP2015) (SAIP, Pretoria, 2016), pp. 539–544.

    Google Scholar 

  45. V. Semin and F. Petruccione, “Dynamical and thermodynamical approaches to open quantum systems,” Sci. Rep. 10, 2607 (2020).

    Article  Google Scholar 

  46. F. Shibata, Y. Takahashi, and N. Hashitsume, “A generalized stochastic Liouville equation. Non-Markovian versus memoryless master equations,” J. Stat. Phys. 17 (4), 171–187 (1977).

    Article  MathSciNet  Google Scholar 

  47. K. Szczygielski, D. Gelbwaser-Klimovsky, and R. Alicki, “Markovian master equation and thermodynamics of a two-level system in a strong laser field,” Phys. Rev. E 87 (1), 012120 (2013).

    Article  Google Scholar 

  48. A. E. Teretenkov, “Non-Markovian evolution of multi-level system interacting with several reservoirs. Exact and approximate,” Lobachevskii J. Math. 40 (10), 1587–1605 (2019).

    Article  MathSciNet  Google Scholar 

  49. A. E. Teretenkov, “Irreversible quantum evolution with quadratic generator: Review,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22 (4), 1930001 (2019).

    Article  MathSciNet  Google Scholar 

  50. A. E. Teretenkov, “Non-perturbative effects in corrections to quantum master equations arising in Bogolubov–van Hove limit,” J. Phys. A: Math. Theor. 54 (26), 265302 (2021).

    Article  MathSciNet  Google Scholar 

  51. A. E. Teretenkov, “Long-time Markovianity of multi-level systems in the rotating wave approximation,” Lobachevskii J. Math. 42 (10), 2455–2465 (2021).

    Article  MathSciNet  Google Scholar 

  52. A. E. Teretenkov, “Effective Gibbs state for averaged observables,” Entropy 24 (8), 1144 (2022).

    Article  MathSciNet  Google Scholar 

  53. A. E. Teretenkov, “Effective Heisenberg equations for quadratic Hamiltonians,” Int. J. Mod. Phys. A 37 (20–21), 2243020 (2022).

    Article  MathSciNet  Google Scholar 

  54. A. I. Trubilko and A. M. Basharov, “The effective Hamiltonian method in the thermodynamics of two resonantly interacting quantum oscillators,” J. Exp. Theor. Phys. 129 (3), 339–348 (2019) [transl. from Zh. Eksp. Teor. Fiz. 156 (3), 407–418 (2019)].

    Article  Google Scholar 

  55. A. I. Trubilko and A. M. Basharov, “Hierarchy of times of open optical quantum systems and the role of the effective Hamiltonian in the white noise approximation,” JETP Lett. 111 (9), 532–538 (2020) [transl. from Pis’ma Zh. Eksp. Teor. Fiz. 111 (9), 632–638 (2020)].

    Article  Google Scholar 

  56. A. Trushechkin, “Calculation of coherences in Förster and modified Redfield theories of excitation energy transfer,” J. Chem. Phys. 151 (7), 074101 (2019).

    Article  Google Scholar 

  57. A. Trushechkin, “Unified Gorini–Kossakowski–Lindblad–Sudarshan quantum master equation beyond the secular approximation,” Phys. Rev. A 103 (6), 062226 (2021).

    Article  MathSciNet  Google Scholar 

  58. A. S. Trushechkin, “Derivation of the Redfield quantum master equation and corrections to it by the Bogoliubov method,” Proc. Steklov Inst. Math. 313, 246–257 (2021) [transl. from Tr. Mat. Inst. Steklova 313, 263–274 (2021)].

    Article  MathSciNet  Google Scholar 

  59. L. van Hove, “Quantum-mechanical perturbations giving rise to a statistical transport equation,” Physica 21 (1–5), 517–540 (1954).

    Article  MathSciNet  Google Scholar 

  60. N. G. Van Kampen, “A cumulant expansion for stochastic linear differential equations. I,” Physica 74 (2), 215–238 (1974).

    Article  MathSciNet  Google Scholar 

  61. N. G. Van Kampen, “A cumulant expansion for stochastic linear differential equations. II,” Physica 74 (2), 239–247 (1974).

    Article  MathSciNet  Google Scholar 

  62. V. I. Yashin, E. O. Kiktenko, A. S. Mastiukova, and A. K. Fedorov, “Minimal informationally complete measurements for probability representation of quantum dynamics,” New J. Phys. 22 (10), 103026 (2020).

    Article  MathSciNet  Google Scholar 

  63. D. Zubarev, V. Morozov, and G. Röpke, Statistical Mechanics of Nonequilibrium Processes, Vol. 1: Basic Concepts, Kinetic Theory (Akad. Verlag, Berlin, 1996).

    Google Scholar 

  64. R. Zwanzig, “Ensemble method in the theory of irreversibility,” J. Chem. Phys. 33 (5), 1338–1341 (1960).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are sincerely grateful to G. Gasbarri, A. Yu. Karasev, E. O. Kiktenko, A. M. Savchenko, R. Singh, and A. S. Trushechkin for discussing the problems considered in the paper. The authors are also grateful to an anonymous referee for valuable comments that helped to significantly improve the text of the paper.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kh. Sh. Meretukov or A. E. Teretenkov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2024, Vol. 324, pp. 144–161 https://doi.org/10.4213/tm4371.

Translated by K. Shubik

Publisher’s note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meretukov, K.S., Teretenkov, A.E. On Time-Dependent Projectors and a Generalization of the Thermodynamical Approach in the Theory of Open Quantum Systems. Proc. Steklov Inst. Math. 324, 135–152 (2024). https://doi.org/10.1134/S0081543824010140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543824010140

Keywords

Navigation