Log in

Weak Limits of Consecutive Projections and of Greedy Steps

  • Research Articles
  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

Let \(H\) be a Hilbert space. We investigate the properties of weak limit points of iterates of random projections onto \(K\geq 2\) closed convex sets in \(H\) and the parallel properties of weak limit points of the residuals of random greedy approximation with respect to \(K\) dictionaries. In the case of convex sets these properties imply weak convergence in all the cases known so far. In particular, we give a short proof of the theorem of Amemiya and Ando on weak convergence when the convex sets are subspaces. The question of weak convergence in general remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. I. Amemiya and T. Ando, “Convergence of random products of contractions in Hilbert space,” Acta Sci. Math. 26, 239–244 (1965).

    MathSciNet  MATH  Google Scholar 

  2. C. Badea, S. Grivaux, and V. Müller, “A generalization of the Friedrichs angle and the method of alternating projections,” C. R., Math., Acad. Sci. Paris 348 (1–2), 53–56 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Badea, S. Grivaux, and V. Müller, “The rate of convergence in the method of alternating projections,” St. Petersburg Math. J. 23 (3), 413–434 (2012) [repr. from Algebra Anal. 23 (3), 1–30 (2011)].

    Article  MathSciNet  MATH  Google Scholar 

  4. H. H. Bauschke, F. Deutsch, and H. Hundal, “Characterizing arbitrarily slow convergence in the method of alternating projections,” Int. Trans. Oper. Res. 16 (4), 413–425 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. A. Borodin, “Greedy approximation by arbitrary sets,” Izv. Math. 84 (2), 246–261 (2020) [transl. from Izv. Ross. Akad. Nauk, Ser. Mat. 84 (2), 43–59 (2020)].

    Article  MathSciNet  MATH  Google Scholar 

  6. P. A. Borodin, “Example of divergence of a greedy algorithm with respect to an asymmetric dictionary,” Math. Notes 109 (3–4), 379–385 (2021) [transl. from Mat. Zametki 109 (3), 352–360 (2021)].

    Article  MathSciNet  MATH  Google Scholar 

  7. P. A. Borodin and E. Kopecká, “Alternating projections, remotest projections, and greedy approximation,” J. Approx. Theory 260, 105486 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. M. Bregman, “The method of successive projection for finding a common point of convex sets,” Sov. Math., Dokl. 6, 688–692 (1965) [transl. from Dokl. Akad. Nauk SSSR 162 (3), 487–490 (1965)].

    MATH  Google Scholar 

  9. J. M. Dye and S. Reich, “Unrestricted iterations of nonexpansive map**s in Hilbert space,” Nonlinear Anal., Theory Methods Appl. 18 (2), 199–207 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Halperin, “The product of projection operators,” Acta Sci. Math. 23, 96–99 (1962).

    MathSciNet  MATH  Google Scholar 

  11. H. S. Hundal, “An alternating projection that does not converge in norm,” Nonlinear Anal., Theory Methods Appl. 57 (1), 35–61 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Kopecká, “Spokes, mirrors and alternating projections,” Nonlinear Anal., Theory Methods Appl. 68 (6), 1759–1764 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Kopecká, “When products of projections diverge,” J. London Math. Soc., Ser. 2, 102 (1), 345–367 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Kopecká and V. Müller, “A product of three projections,” Stud. Math. 223 (2), 175–186 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Kopecká and A. Paszkiewicz, “Strange products of projections,” Isr. J. Math. 219 (1), 271–286 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Matoušková and S. Reich, “The Hundal example revisited,” J. Nonlinear Convex Anal. 4 (3), 411–427 (2003).

    MathSciNet  MATH  Google Scholar 

  17. J.-J. Moreau, “Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires,” C. R. Acad. Sci., Paris 255, 238–240 (1962).

    MathSciNet  MATH  Google Scholar 

  18. J. von Neumann, “On rings of operators. Reduction theory,” Ann. Math., Ser. 2, 50, 401–485 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Paszkiewicz, “The Amemiya–Ando conjecture falls,” ar**v: 1203.3354 [math.FA].

  20. V. Temlyakov, Greedy Approximation (Cambridge Univ. Press, Cambridge, 2011), Cambridge Monogr. Appl. Comput. Math. 20.

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referee for useful comments.

Funding

The work of the first author is supported by the Russian Science Foundation under grant no. 22-21-00415, https://rscf.ru/project/22-21-00415/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr A. Borodin.

Additional information

Published in Russian in Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2022, Vol. 319, pp. 64–72 https://doi.org/10.4213/tm4264.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borodin, P.A., Kopecká, E. Weak Limits of Consecutive Projections and of Greedy Steps. Proc. Steklov Inst. Math. 319, 56–63 (2022). https://doi.org/10.1134/S0081543822050054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543822050054

Keywords

Navigation