Log in

Fractional McKean–Vlasov and Hamilton–Jacobi–Bellman–Isaacs Equations

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We study a class of abstract nonlinear fractional pseudo-differential equations in Banach spaces that includes both the McKean–Vlasov type equations describing nonlinear Markov processes and the Hamilton–Jacobi–Bellman–Isaacs (HJB–Isaacs) equations of stochastic control and games. This approach allows us to develop a unified analysis of these equations. We establish their well-posedness in the sense of classical solutions and prove the continuous dependence of the solutions on the initial data. The obtained results are extended to the case of generalized fractional equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Atanackovic, D. Dolicanin, S. Pilipovic, and B. Stankovic, “Cauchy problems for some classes of linear fractional differential equations,” Fract. Calc. Appl. Anal. 17 (4), 1039–1059 (2014). https://doi.org/10.2478/s13540-014-0213-1

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, 2nd ed. (World Scientific, Singapore, 2016), Ser. Complexity, Nonlinearity and Chaos, Vol. 5. https://doi.org/10.1142/10044

    Book  MATH  Google Scholar 

  3. V. Barbu and G. Da Prato, Hamilton–Jacobi Equations in Hilbert Spaces (Pitman, London, 1983), Ser. Research Notes in Mathematics, Vol. 86.

    MATH  Google Scholar 

  4. M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton–Jacobi equations,” Trans. Amer. Math. Soc. 277 (1), 1–42 (1983). https://doi.org/10.1090/S0002-9947-1983-0690039-8

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Crisan and E. McMurray, “Smoothing properties of McKean–Vlasov SDEs,” Probab. Theory Related Fields 171 (1–2), 97–148 (2018). https://doi.org/10.1007/s00440-017-0774-0

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Dawson and J. Vaillancourt, “Stochastic McKean–Vlasov equations,” Nonlinear Differ. Equ. Appl. 2 (2), 199–229 (1995). https://doi.org/10.1007/BF01295311

    Article  MathSciNet  MATH  Google Scholar 

  7. M. E. Hernandez-Hernandez, V. N. Kolokoltsov, and L. Toniazzi, “Generalized fractional evolution of Caputo type,” Chaos Solitons Fractals 102, 184–196 (2017). https://doi.org/10.1016/j.chaos.2017.05.005

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Kilbas, “Hadamard-type fractional calculus,” J. Korean Math. Soc. 38 (6), 1191–1204 (2001).

    MathSciNet  MATH  Google Scholar 

  9. V. Kiryakova, Generalized Fractional Calculus and Applications (Longman Sci. Tech., Harlow, 1993), Ser. Pitman Research Notes in Mathematics, Vol. 301.

    MATH  Google Scholar 

  10. A. N. Kochubei and Y. Kondratiev, “Fractional kinetic hierarchies and intermittency,” Kinet. Relat. Models 10 (3), 725–740 (2017). https://doi.org/10.3934/krm.2017029

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Kochubei and Yu. Luchko, Handbook of Fractional Calculus with Applications: Fractional Differential Equations (De Gruyter, Berlin, 2019), Vol. 2. https://doi.org/10.1515/9783110571660

    Book  MATH  Google Scholar 

  12. V. N. Kolokoltsov, “Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics,” Theor. Probability Appl. 53 (4), 594–609 (2009). https://doi.org/10.1137/S0040585X97983857

    Article  MathSciNet  MATH  Google Scholar 

  13. V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations (Cambridge Univ. Press, Cambridge, 2010), Ser. Cambridge Tracts in Mathematics, Vol. 182.

    Book  Google Scholar 

  14. V. N. Kolokoltsov, “On fully mixed and multidimensional extensions of the Caputo and Riemann–Liouville derivatives, related Markov processes and fractional differential equations,” Fract. Calc. Appl. Anal. 18 (4), 1039–1073 (2015). https://doi.org/10.1515/fca-2015-0060

    Article  MathSciNet  MATH  Google Scholar 

  15. V. N. Kolokoltsov, Differential Equations on Measures and Functional Spaces (Birkhäuser, Boston, 2019), Ser. Birkhäuser Advanced Texts Basler Lehrbücher. https://doi.org/10.1007/978-3-030-03377-4

    Book  MATH  Google Scholar 

  16. V. N. Kolokoltsov and M. Troeva, “Regularity and sensitivity for McKean–Vlasov type SPDEs generated by stable-like processes,” Probl. Anal. Issues Anal. 7(25) (2), 69–81 (2018). https://doi.org/10.15393/j3.art.2018.5250

    Article  MathSciNet  MATH  Google Scholar 

  17. V. N. Kolokoltsov and M. Troeva, “On mean field games with common noise and McKean–Vlasov SPDEs,” Stoch. Anal. Appl. 37 (4), 522–549 (2019). https://doi.org/10.1080/07362994.2019.1592690

    Article  MathSciNet  MATH  Google Scholar 

  18. V. N. Kolokoltsov and M. Troeva, Abstract McKean–Vlasov and HJB Equations, Their Fractional Versions and Related Forward–Backward Systems on Riemannian Manifolds (2021). https://arxiv.org/abs/2103.05359.pdf

  19. V. N. Kolokoltsov and M. Veretennikova, “Fractional Hamilton Jacobi Bellman equations for scaled limits of controlled Continuous Time Random Walks,” Commun. Appl. Ind. Math. 6 (1), article e-484 (2014). https://doi.org/10.1685/journal.caim.484

    Article  MathSciNet  MATH  Google Scholar 

  20. V. N. Kolokoltsov and M. Veretennikova, “Well-posedness and regularity of the Cauchy problem for nonlinear fractional in time and space equations,” Fract. Differ. Calc. 4 (1), 1–30 (2014). https://doi.org/10.7153/fdc-04-01

    Article  MathSciNet  MATH  Google Scholar 

  21. N. N. Krasovskii and A. I. Subbotin, Game-Theoretical Control Problems (Springer, New York, 1988).

    Book  Google Scholar 

  22. Th. Kurtz and J. **ong, “Particle representations for a class of nonlinear SPDEs,” Stoch. Proc. Appl. 83 (1), 103–126 (1999). https://doi.org/10.1016/S0304-4149(99)00024-1

    Article  MathSciNet  MATH  Google Scholar 

  23. N. N. Leonenko, M. M. Meerschaert, and A. Sikorskii, “Correlation structure of fractional Pearson diffusions,” Comput. Math. Appl. 66 (5), 737–745 (2013). https://doi.org/10.1016/j.camwa.2013.01.009

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Meerschaert, E. Nane, and P. Vellaisamy, “Fractional Cauchy problems on bounded domains,” Annals Probability 37 (3), 979–1007 (2009). https://doi.org/10.1214/08-AOP426

    Article  MathSciNet  MATH  Google Scholar 

  25. A. V. Pskhu, “Initial-value problem for a linear ordinary differential equation of noninteger order,” Sb. Math. 202 (4), 571–582 (2011). https://doi.org/10.1070/SM2011v202n04ABEH004156

    Article  MathSciNet  MATH  Google Scholar 

  26. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications (Academic, San Diego, 1999), Ser. Mathematics in Science and Engineering, Vol. 198.

    MATH  Google Scholar 

  27. A. I. Subbotin, Generalized Solutions of First-Order PDEs: The Dynamic Optimization Perspective (Birkhäuser, Boston, 1995). https://doi.org/10.1007/978-1-4612-0847-1

    Book  Google Scholar 

  28. N. N. Subbotina, E. A. Kolpakova, T. B. Tokmantsev, and L. G. Shagalova, The Method of Characteristics for Hamilton–Jacobi–Bellman equations (RIO UrO RAN, Yekaterinburg, 2013) [in Russian].

    Google Scholar 

  29. V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-14003-7

    Book  Google Scholar 

  30. V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-33911-0

    Book  MATH  Google Scholar 

  31. A. Yu. Veretennikov, “On ergodic measures for McKean–Vlasov stochastic equations,” in Monte Carlo and Quasi-Monte Carlo Methods, Ed. by H. Niederreiter and D. Talay (Springer, Berlin, 2006), pp. 471–486 (2004). https://doi.org/10.1007/3-540-31186-6_29

    Chapter  Google Scholar 

  32. U. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control (Elsevier, London, 2016).

    MATH  Google Scholar 

Download references

Funding

The research of the first author (Sections 1, 4, and 5) was supported by the Russian Science Foundation (project no. 20-11-20119), and the research of the second author (Sections 2, 3, and 6) was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FSRG-2020-0006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. N. Kolokoltsov or M. S. Troeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated from Trudy Instituta Matematiki i Mekhaniki UrO RAN, Vol. 27, No. 3, pp. 87 - 100, 2021 https://doi.org/10.21538/0134-4889-2021-27-3-87-100.

Translated by I. Tselishcheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolokoltsov, V.N., Troeva, M.S. Fractional McKean–Vlasov and Hamilton–Jacobi–Bellman–Isaacs Equations. Proc. Steklov Inst. Math. 315 (Suppl 1), S165–S177 (2021). https://doi.org/10.1134/S0081543821060134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543821060134

Keywords

Navigation