Log in

Convex bodies and multiplicities of ideals

  • Published:
Proceedings of the Steklov Institute of Mathematics Aims and scope Submit manuscript

Abstract

We associate convex regions in ℝn to m-primary graded sequences of subspaces, in particular m-primary graded sequences of ideals, in a large class of local algebras (including analytically irreducible local domains). These convex regions encode information about Samuel multiplicities. This is in the spirit of the theory of Gröbner bases and Newton polyhedra on the one hand, and the theory of Newton-Okounkov bodies for linear systems on the other hand. We use this to give a new proof as well as a generalization of a Brunn-Minkowski inequality for multiplicities due to Teissier and Rees-Sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps (Birkhäuser, New York, 2012), Vol. 1, Modern Birkhäuser Classics.

    Book  Google Scholar 

  2. Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities (Springer, Berlin, 1988), Grundl. Math. Wiss. 285.

    Book  MATH  Google Scholar 

  3. S. D. Cutkosky, “Multiplicities associated to graded families of ideals,” Algebra Number Theory 7(9), 2059–2083 (2013); ar**v: 1206.4077 [math.AC].

    Article  MathSciNet  MATH  Google Scholar 

  4. S. D. Cutkosky, “Multiplicities of graded families of linear series and ideals,” ar**v: 1301.5613 [math.AG].

  5. S. D. Cutkosky, “Asymptotic multiplicities,” ar**v: 1311.1432 [math.AC].

  6. T. de Fernex, L. Ein, and M. Mustaţă, “Multiplicities and log canonical threshold,” J. Algebr. Geom. 13(3), 603–615 (2004).

    Article  MATH  Google Scholar 

  7. F. Fillastre, “Fuchsian convex bodies: Basics of Brunn-Minkowski theory,” Geom. Funct. Anal. 23(1), 295–333 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Fulger, “Local volumes on normal algebraic varieties,” ar**v: 1105.2981 [math.AG].

  9. R. Hübl, “Completions of local morphisms and valuations,” Math. Z. 236(1), 201–214 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Kaveh and A. G. Khovanskii, “Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory,” Ann. Math., Ser. 2, 176(2), 925–978 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Kaveh and A. G. Khovanskii, “On mixed multiplicities of ideals,” ar**v: 1310.7979 [math.AG].

  12. A. G. Khovanskii, “Algebra and mixed volumes,” in Yu. D. Burago and V. A. Zalgaller, Geometric Inequalities (Springer, Berlin, 1988), Ch. 4, Addendum 3, Grundl. Math. Wiss. 285, pp. 182–207.

    Google Scholar 

  13. A. G. Khovanskii, “Newton polyhedron, Hilbert polynomial, and sums of finite sets,” Funkts. Anal. Prilozh. 26(4), 57–63 (1992) [Funct. Anal. Appl. 26, 276–281 (1992)].

    MathSciNet  Google Scholar 

  14. A. Khovanskii and V. Timorin, “Alexandrov-Fenchel inequality for coconvex bodies,” ar**v: 1305.4484 [math.MG].

  15. A. Khovanskii and V. Timorin, “On the theory of coconvex bodies,” ar**v: 1308.1781 [math.MG].

  16. A. G. Kouchnirenko, “Polyèdres de Newton et nombres de Milnor,” Invent. Math. 32(1), 1–31 (1976).

    Article  MathSciNet  Google Scholar 

  17. R. Lazarsfeld and M. Mustaţă, “Convex bodies associated to linear series,” Ann. Sci. Éc. Norm. Super., Ser. 4, 42(5), 783–835 (2009).

    MATH  Google Scholar 

  18. C. Lech, “Inequalities related to certain couples of local rings,” Acta Math. 112, 69–89 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Mustaţă, “On multiplicities of graded sequences of ideals,” J. Algebra 256(1), 229–249 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Okounkov, “Brunn-Minkowski inequality for multiplicities,” Invent. Math. 125(3), 405–411 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Okounkov, “Why would multiplicities be log-concave?,” in The Orbit Method in Geometry and Physics, Marseille, 2000 (Birkhäuser, Boston, MA, 2003), Prog. Math. 213, pp. 329–347.

    Google Scholar 

  22. D. Rees and R. Y. Sharp, “On a theorem of B. Teissier on multiplicities of ideals in local rings,” J. London Math. Soc., Ser. 2, 18(3), 449–463 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Teissier, “Sur une inégalité à la Minkowski pour les multiplicités,” Ann. Math., Ser. 2,106 (1), 38–44 (1977).

    Google Scholar 

  24. B. Teissier, “Jacobian Newton polyhedra and equisingularity,” ar**v: 1203.5595 [math.AG].

  25. O. Zariski and P. Samuel, Commutative Algebra (Springer, New York, 1976), Vol. 2, Grad. Texts Math. 29.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiumars Kaveh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh, K., Khovanskii, A. Convex bodies and multiplicities of ideals. Proc. Steklov Inst. Math. 286, 268–284 (2014). https://doi.org/10.1134/S0081543814060169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0081543814060169

Keywords

Navigation