Log in

Crisis Phenomena and Heat-Transfer Enhancement during Boling and Evaporation in Horizontal Liquid Films (Review)

  • HEAT AND MASS TRANSFER AND PROPERTIES OF WORKING FLUIDS AND MATERIALS
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

A brief review is presented of studies in the field of heat-transfer enhancement and for increasing the critical heat fluxes (CHFs) during boiling and evaporation in thin horizontal liquid layers. The effect of the liquid layer height on heat-transfer efficiency at various heat fluxes has been analyzed. Decreasing the film thickness enhances heat transfer at low heat fluxes, while heat-transfer augmentation occurs at high heat fluxes in films whose height is greater than the capillary constant. The heat-transfer coefficient (HTC) first rises with a layer height, and then decreases to pool boiling values. The structures formed in thin liquid layers are examined in a wide range of layer heights and pressures. The mechanisms of formation of various structures and the effect on heat-transfer enhancement depending on process conditions were also discussed. The existence of regimes with heat-transfer enhancement during evaporation of a liquid layer at reduced pressures has been demonstrated. The heat-transfer coefficient in these regimes is higher than during nucleate boiling in a layer of the same height at a higher pressure. This is caused by the effect of the structures formed in these regimes. It has been found that CHF rises with an increase in the layer thickness to pool boiling values. The heat-transfer coefficients during nucleate boiling in thin films on capillary-porous surfaces are approximately three to five times higher than on a smooth surface. It has been demonstrated that there is an optimal film surface at low pressures, which provides higher heat-transfer coefficients than those on a smooth surface. Higher heat conductivity coatings of the same shape considerably increase CHFs in the entire pressure range for liquid layer thicknesses of the order of the capillary constant. It was found that, with a characteristic spacing between the coating fins, which is equal to the capillary constant of the liquid, the highest heat-transfer coefficients are attained in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. The solid component of a part is manufactured by selective laser melting (SLM) technology, and the porous coating by the selective laser sintering (SLS) technology.

REFERENCES

  1. G. N. Kruzhilin, “Heat transfer from a horizontal plate to a boiling liquid under free convection,” Dokl. Akad. Nauk SSSR 58, 1657–1660 (1947).

    Google Scholar 

  2. W. Fritz, “Berechnung des maximalen Volumens von Dampfblasen,” Phys. Z. 36, 379–384 (1935).

    Google Scholar 

  3. M. Jakob and W. Linke, “Der Wärmeübergang beim Verdampfen von Flüssigkeiten an senkrechten und waagerechten Flächen,” Phys. Z. 36, 267–280 (1935).

    Google Scholar 

  4. S. S. Kutateladze, Heat Transfer in Condensation and Boiling, 2nd ed. (Meshgiz, Moscow, 1952; U.S. Atomic Energy Commission Technical Information Service, Oak Ridge, Tenn., 1952).

  5. V. I. Tolubinskii, V. A. Antonenko, and Yu. N. Ostrovskii, “Heat transfer in vaporization in thin films,” Prom. Teplotekh. 3 (3), 9–13 (1961).

    Google Scholar 

  6. V. A. Grigor’ev and A. S. Dudkevich, “Boiling of cryogenic liquids in a thin film,” Teploenergetika, No. 12, 54–57 (1970).

    Google Scholar 

  7. V. A. Grigor’ev, A. S. Dudkevich, and Yu. M. Pavlov, “Boiling of cryogenic liquids in a thin film,” Vopr. Radioelektron., Ser.: Tepl. Rezhimy, Termostatirovanie Okhlazhd. Radioelektron. Appar., No. 1, 83–90 (1970).

  8. V. A. Grigor’ev, Yu. M. Pavlov, and E. V. Ametistov, Boiling of Cryogenic Liquids (Energiya, Moscow, 1977) [in Russian].

    Google Scholar 

  9. A. N. Pavlenko and D. V. Kuznetsov, “Development of methods for heat transfer enhancement during nitrogen boiling to ensure stabilization of HTS devices,” J. Eng. Thermophys. 30, 526–562 (2021). https://doi.org/10.1134/S1810232821040019

    Article  Google Scholar 

  10. K. Nishikawa, H. Kusuda, K. Yamasaki, and K. Tanaka, “Nucleate boiling at low liquid levels,” Bull. JSME 10, 328–338 (1967). https://doi.org/10.1299/jsme1958.10.328

    Article  Google Scholar 

  11. V. I. Tolubinskii, Heat Exchange at Boiling (Naukova dumka, Kiev, 1980) [in Russian].

    Google Scholar 

  12. V. I. Tolubinskii, V. A. Antonenko, A. A. Kriveshko, and Yu. N. Ostrovskii, “Suppression of nucleate boiling in a stationary liquid film,” Teplofiz. Vys. Temp. 15, 822–827 (1977).

    Google Scholar 

  13. K. Nishikawa, “Nucleate boiling in liquid film,” Trans. Jpn. Soc. Mech. Eng. 34, 935–949 (1968).

    Google Scholar 

  14. S. Gong, W. Ma, and H. Gu, “An experimental investigation on bubble dynamics and boiling crisis in liquid films,” Int. J. Heat Mass Transfer 79, 694–703 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.065

    Article  Google Scholar 

  15. A. Ono and H. Sakashita, “Liquid–vapor structure near heating surface at high heat flux in subcooled pool boiling,” Int. J. Heat Mass Transfer 50, 3481–3489 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.026

    Article  MATH  Google Scholar 

  16. H. Sakashita and A. Ono, “Boiling behaviors and critical heat flux on a horizontal plate in saturated pool boiling of water at high pressures,” Int. J. Heat Mass Transfer 52, 744–750 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.040

    Article  Google Scholar 

  17. V. I. Deev, V. V. Gusev, and G. P. Dubrovskii, “Investigation of the mechanism of boiling water at reduced pressures,” Teploenergetika, No. 8, 73– 75 (1965).

    Google Scholar 

  18. V. I. Tolubinskii, V. A. Antonenko, and Yu. N. Ostrovskii, “Boundaries of the region of existence of nucleate boiling of a saturated liquid,” Teplofiz. Teplotekh., No. 34, 3–6 (1978).

  19. M. K. Bezrodnyi, I. L. Pioro, and T. O. Kostyuk, Transport Processes in Two-Phase Thermosyphon Systems. Theory and Practice, 2nd ed. (Fakt, Kyiv, 2005) [in Russian].

    Google Scholar 

  20. M. Y. Shukla and S. G. Kandlikar, “Influence of liquid height on bubble coalescence, vapor venting, liquid return, and heat transfer in pool boiling,” Int. J. Heat Mass Transfer 173, 121261 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121261

    Article  Google Scholar 

  21. I. L. Pioro, “Boiling heat transfer characteristics of thin liquid layers in a horizontally flat two-phase thermosiphon,” in Preprints of the 10th Int. Heat Pipe Conf., Stuttgart, Germany, Sept. 1997, paper H1-5.

  22. I. L. Pioro, “Experimental evaluation of constants for the Rohsenow pool boiling correlation,” Int. J. Heat Mass Transfer 42, 2003–2013 (1999). https://doi.org/10.1016/S0017-9310(98)00294-4

    Article  Google Scholar 

  23. I. L. Pioro, W. Rohsenow, and S. S. Doerffer, “Nucleate pool-boiling heat transfer. I: Review of parametric effects of boiling surface,” Int. J. Heat Mass Transfer 47, 5033–5044 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.019

    Article  MATH  Google Scholar 

  24. I. L. Pioro, W. Rohsenow, and S. S. Doerffer, “Nucleate pool-boiling heat transfer. II: Assessment of prediction methods,” Int. J. Heat Mass Transfer 47, 5045–5057 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.06.020

    Article  MATH  Google Scholar 

  25. V. V. Yagov, “Is a crisis in pool boiling actually a hydrodynamic phenomenon?,” Int. J. Heat Mass Transfer 73, 265–273 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.076

    Article  Google Scholar 

  26. V. I. Zhukov and A. N. Pavlenko, “Heat transfer and critical phenomena during evaporation and boiling in a thin horizontal liquid layer at low pressures,” Int. J. Heat Mass Transfer 117, 978–990 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.060

    Article  Google Scholar 

  27. V. I. Zhukov and A. N. Pavlenko, “Regimes of intensified heat transfer during evaporation of thin horizontal liquid layers at reduced pressures,” Tech. Phys. Lett. 44, 508–510 (2018). https://doi.org/10.1134/S1063785018060299

    Article  Google Scholar 

  28. I. I. Gogonin, A. R. Dorokhov, and V. I. Zhukov, “Study of evaporation from a thin oil layer under vacuum conditions,” Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 3, 8–13 (1989).

    Google Scholar 

  29. V. I. Zhukov, “Enhanced heat transfer under conditions of liquid boiling in a thin layer at reduced pressure,” Theor. Found. Chem. Eng. 45, 690–694 (2011).

    Article  Google Scholar 

  30. V. I. Zhukov and A. N. Pavlenko, “Critical phenomena at evaporation in a thin liquid layer at reduced pressures,” J. Eng. Thermophys. 22, 257–287 (2013). https://doi.org/10.1134/S1810232813040012

    Article  Google Scholar 

  31. V. I. Zhukov, A. N. Pavlenko, Yu. V. Nagaitseva, and D. Vaiss, “Effect of the layer height on heat transfer and the critical heat flux in evaporation of a fluid under low pressures,” High Temp. 53, 690–696 (2015). https://doi.org/10.1134/S0018151X15050284

    Article  Google Scholar 

  32. V. I. Zhukov and A. N. Pavlenko, “Effect of the height of the horizontal layer of liquid on the development of critical phenomena in evaporation at reduced pressures,” Heat Transfer Res. 49, 979–990 (2018). https://doi.org/10.1615/HeatTransRes.2017016778

    Article  Google Scholar 

  33. V. I. Zhukov and A. N. Pavlenko, “The mechanism of surface cooling by a horizontal layer of liquid evaporating at low reduced pressures,” AIP Adv. 11, 015341 (2021). https://doi.org/10.1063/5.0023668

    Article  Google Scholar 

  34. L. N. Howard, “Convection at high Rayleigh number,” in Proc. of the 11th Int. Congr. on Applied Mechanics, Munich, Germany, 1964 (Springer, Berlin, 1966), pp. 1109–1115. https://doi.org/10.1007/978-3-662-29364-5_147

  35. R. F. Gaertner, “Photographic study of nucleate pool boiling on a horizontal surface,” J. Heat Transfer 87, 17–27 (1965). https://doi.org/10.1115/1.3689038

    Article  Google Scholar 

  36. H. S. Ahn and M. H. Kim, “Visualization study of critical heat flux mechanism on a small and horizontal copper heater,” Int. J. Multiphase Flow 41, 1–12 (2012). https://doi.org/10.1016/j.ijmultiphaseflow.2011.12.006

    Article  Google Scholar 

  37. I. C. Bang, S. H. Chang, and W.-P. Baek, “Visualization of a principle mechanism of critical heat flux in pool boiling,” Int. J. Heat Mass Transfer 48, 5371–5385 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.006

    Article  Google Scholar 

  38. A. M. Bhat, R. Prakash, and J. S. Saini, “On the mechanism of macrolayer formation in nucleate pool boiling at high heat flux,” Int. J. Heat Mass Transfer 26, 735–740 (1983). https://doi.org/10.1016/0017-9310(83)90024-8

    Article  MATH  Google Scholar 

  39. A. K. Rajvanshi, J. S. Saini, and R. Prakash, “Investigation of macrolayer thickness in nucleate pool boiling at high heat flux,” Int. J. Heat Mass Transfer 35, 343–350 (1992).

    Article  Google Scholar 

  40. A. Ono and H. Sakashita, “Liquid–vapor structure near heating surface at high heat flux in subcooled pool boiling,” Int. J. Heat Mass Transfer 50, 3481–3489 (2007). https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.026

    Article  MATH  Google Scholar 

  41. T. Kumada and H. Sakashita, “Pool boiling heat transfer — II. Thickness of liquid macrolayer formed beneath vapor masses,” Int. J. Heat Mass Transfer 38, 979–987 (1995). https://doi.org/10.1016/0017-9310(94)00225-K

    Article  Google Scholar 

  42. K. A. Kumar, I. S. Raj, P. Jeyaraman, N. Tamilselvam, and B. R. Aravindraj, “The development of macrolayer thickness of water in the pool boiling regime,” Int. J. Ambient Energy 41, 1057–1059 (2020).

    Article  Google Scholar 

  43. S. Gong, W. Ma, C. Wang, Y. Mei, and H. Gu, “An investigation on dynamic thickness of a boiling liquid film,” Int. J. Heat Mass Transfer 90, 636–644 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.011

    Article  Google Scholar 

  44. M.-C. Chyu, “Evaporation of macrolayer in nucleate boiling near burnout,” Int. J. Heat Mass Transfer 30, 1531–1538 (1987). https://doi.org/10.1016/0017-9310(87)90184-0

    Article  Google Scholar 

  45. K. O. Pasamehmetoglu, P. R. Chappidi, C. Unal, and R. A. Nelson, “Saturated pool nucleate boiling mechanisms at high heat fluxes,” Int. J. Heat Mass Transfer 36, 3859–3868 (1993).

    Article  Google Scholar 

  46. V. K. Dhir and S. P. Liaw, “Framework for s unified model for nucleate and transition pool boiling,” J. Heat Transfer 111, 739–746 (1989). https://doi.org/10.1115/1.3250745

    Article  Google Scholar 

  47. J. H. Lay and V. K. Dhir, “Shape of vapor stem during nucleate boiling of saturated liquids,” J. Heat Transfer 117, 394–401 (1995). https://doi.org/10.1115/1.2822535

    Article  Google Scholar 

  48. K. Sefiane, D. Benielli, and A. Steinchen, “A new mechanism for pool boiling crisis, recoil instability and contact angle influence,” Colloids Surf., A 142, 361–373 (1998). https://doi.org/10.1016/S0927-7757(98)00614-1

    Article  Google Scholar 

  49. T. G. Theofanous, J. P. Tu, A. T. Dinh, and T. N. Dinh, “The boiling crisis phenomenon. Part I: Nucleation and nucleate boiling heat transfer,” Exp. Therm. Fluid Sci. 26, 775–792 (2002). https://doi.org/10.1016/S0894-1777(02)00192-9

    Article  Google Scholar 

  50. B. V. Deryagin, N. V. Churaev, and V. M. Muller, Surface Forces (Nauka, Moscow, 1985; Consultants Bureau, New York, 1987).

  51. T. G. Theofanous, T. N. Dinh, J. P. Tu, and A. T. Dinh, “The boiling crisis phenomenon. Part II: Dryout dynamics and burnout,” Exp. Therm. Fluid Sci. 26, 793–810 (2002). https://doi.org/10.1016/S0894-1777(02)00193-0

    Article  Google Scholar 

  52. V. I. Tolubinskii, V. A. Antonenko, and G. V. Ivanenko, “Effect of liquid layer thickness on critical thermal loads at boiling,” Prom. Teplotekh. 10 (2), 3–6 (1988).

    Google Scholar 

  53. S. S. Kutateladze, “Hydromechanical model of heat transfer crisis in a boiling liquid with free convection,” Zh. Tekh. Fiz. 20, 1389–1392 (1950).

    Google Scholar 

  54. V. V. Yagov, “Physical model and calculation formula for critical heat fluxes with nucleate pool boiling of liquids,” Therm. Eng. 35, 333–339 (1988).

    Google Scholar 

  55. L. D. Landau, “On the theory of slow combustion,” Zh. Eksp. Teor. Fiz. 14, 240–245 (1944).

    Google Scholar 

  56. N. Zuber, “On the stability of boiling heat transfer,” J. Fluids Eng. 80, 711–714 (1958). https://doi.org/10.1115/1.4012484

    Article  Google Scholar 

  57. J. H. Lienhard and V. K. Dhir, “Hydrodynamic prediction of peak pool-boiling heat fluxes from finite bodies,” J. Heat Transfer 95, 152–158 (1973). https://doi.org/10.1115/1.3450013

    Article  Google Scholar 

  58. V. I. Zhukov and A. N. Pavlenko, “Crisis of nucleate boiling in a finite-height horizontal layer of liquid,” J. Eng. Thermophys. 29, 1–13 (2020). https://doi.org/10.1134/S1810232820010014

    Article  Google Scholar 

  59. A. N. Pavlenko, “On the physics of the development of boiling crisis phenomena (comments on the article of E. D. Fedorovich "On the expediency of develo** a two-stage model of boiling crisis of a liquid wetting a heating surface”),” Therm. Eng. 67, 853–859 (2020). https://doi.org/10.1134/S0040601520110099

    Article  Google Scholar 

  60. G. Liang and I. Mudawar, “Review of pool boiling enhancement by surface modification,” Int. J. Heat Mass Transfer 128, 892–933 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.026

    Article  Google Scholar 

  61. M. P. Chinmay and S. G. Kandlikar, “Review of the manufacturing techniques for porous surfaces used in enhanced pool boiling,” Heat Transfer Eng. 35, 887–902 (2014). https://doi.org/10.1080/01457632.2014.862141

    Article  Google Scholar 

  62. U. Sajjad, A. Sadeghianjahromi, H. M. Ali, and C.‑C. Wang, “Enhanced pool boiling of dielectric and highly wetting liquids — A review on enhancement mechanisms,” Int. Commun. Heat Mass Transfer 119, 104950 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104950

    Article  Google Scholar 

  63. D. H. Min, G. S. Hwang, Y. Usta, O. N. Cora, M. Koc, and M. Kaviany, “2-D and 3-D modulated porous coatings for enhanced pool boiling,” Int. J. Heat Mass Transfer 52, 2607–2613 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.12.018

    Article  Google Scholar 

  64. X. Ji, J. Xu, Z. Zhao, and W. Yang, “Pool boiling heat transfer on uniform and non-uniform porous coating surfaces,” Exp. Therm. Fluid Sci. 48, 198–212 (2013). https://doi.org/10.1016/j.expthermflusci.2013.03.002

    Article  Google Scholar 

  65. M. M. Rahman, J. Pollack, and M. McCarthy, “Increasing boiling heat transfer using low conductivity materials,” Sci. Rep. 5, 13145 (2015). https://doi.org/10.1038/srep13145

    Article  Google Scholar 

  66. S. Wiriyasart and P. Naphon, “Fill ratio effects on vapor chamber thermal resistance with different configuration structures,” Int. J. Heat Mass Transfer 127, 164–171 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.029

    Article  Google Scholar 

  67. J. A. Weibel, S. V. Garimella, and M. T. North, “Characterization of evaporation and boiling from sintered powder wicks fed by capillary action,” Int. J. Heat Mass Transfer 53, 4204–4215 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.05.043

    Article  Google Scholar 

  68. Y. Tang, J. Zeng, S. Zhang, C. Chen, and J. Chen, “Effect of structural parameters on pool boiling heat transfer for porous interconnected microchannel nets,” Int. J. Heat Mass Transfer 93, 906–917 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.009

    Article  Google Scholar 

  69. D. Deng, Q. Huang, Y. **e, X. Huang, and X. Chu, “Thermal performance of composite porous vapor chambers with uniform radial grooves,” Appl. Therm. Eng. 125, 1334–1344 (2017). https://doi.org/10.1016/j.applthermaleng.2017.07.108

    Article  Google Scholar 

  70. C. Li, G. P. Peterson, and Y. X. Wang, “Evaporation/boiling in thin capillary wicks (I) — Wick thickness effects,” J. Heat Transfer 128, 1312–1319 (2006). https://doi.org/10.1115/1.2349507

    Article  Google Scholar 

  71. T. Li and G. P. Peterson, “Evaporation/boiling in thin capillary wicks (II) — Effects of volumetric porosity and mesh size,” J. Heat Transfer 128, 1320–1328 (2006). https://doi.org/10.1115/1.2349508

    Article  Google Scholar 

  72. V. I. Tolubinskii, V. A. Antonenko, Yu. N. Ostrovskii, and E. N. Shevchuk, “Limiting heat flux densities at liquid evaporation in capillaries of wicks of low-temperature heat pipes,” Teplofiz. Vys. Temp. 18, 367–373 (1980).

    Google Scholar 

  73. F. J. Hong, P. Cheng, H. Y. Wu, and Z. Sun, “Evaporation/boiling heat transfer on capillary feed copper particle sintered porous wick at reduced pressure,” Int. J. Heat Mass Transfer 63, 389–400 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.086

    Article  Google Scholar 

  74. J.-H. Liou, C.-W. Chang, C. Chao, and S.-C. Wong, “Visualization and thermal resistance measurement for the sintered meshwick evaporator in operating flat-plate heat pipes,” Int. J. Heat Mass Transfer 53, 1498–1506 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.046

    Article  Google Scholar 

  75. S. C. Wong, J. H. Liou, and C. W. Chang, “Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes,” Int. J. Heat Mass Transfer 53, 3792–3798 (2010). https://doi.org/10.1016/j.ijheatmasstransfer.2010.04.031

    Article  Google Scholar 

  76. C. Zhang, F. Hong, and P. Cheng, “Simulation of liquid thin film evaporation and boiling on a heated hydrophilic microstructured surface by Lattice Boltzmann method,” Int. J. Heat Mass Transfer 86, 629–638 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.029

    Article  Google Scholar 

  77. V. P. Bessmeltsev, A. N. Pavlenko, and V. I. Zhukov, “Development of a technology for creating structured capillary-porous coatings by means of 3D printing for intensification of heat transfer during boiling,” Optoelectron., Instrum. Data Process. 55, 554–563 (2019). https://doi.org/10.3103/S8756699019060049

    Article  Google Scholar 

  78. A. N. Pavlenko and V. V. Lel, “Heat transfer and crisis phenomena in falling films of cryogenic liquid,” Russ. J. Eng. Thermophys. 7, 177–210 (1997).

    Google Scholar 

  79. N. Read, W. Wang, K. Essa, and M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Mater. Des. 65, 417–424 (2015). https://doi.org/10.1016/j.matdes.2014.09.044

    Article  Google Scholar 

  80. V. I. Zhukov, A. N. Pavlenko, and D. A. Shvetsov, “The effect of pressure on heat transfer at evaporation/boiling in horizontal liquid layers of various heights on a microstructured surface produced by 3D laser printing,” Int. J. Heat and Mass Transfer 163, 120488 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120488

    Article  Google Scholar 

  81. D. A. Shvetsov, A. N. Pavlenko, A. E. Brester, and V. I. Zhukov, “A map of regimes of evaporation and boiling in the horizontal liquid layer on the modified surface,” J. Phys.: Conf. Ser. 2039, 012033 (2021). https://doi.org/10.1088/1742-6596/2039/1/012033

    Article  Google Scholar 

  82. D. A. Shvetsov, A. N. Pavlenko, A. E. Brester, and V. I. Zhukov, “Experimental study of heat transfer during boiling in a thin layer of liquid on surfaces with structured porous coatings,” J. Phys.: Conf. Ser. 2119, 012082 (2021). https://doi.org/10.1088/1742-6596/2119/1/012082

    Article  Google Scholar 

  83. S. G. Liter and M. Kaviany, “CHF enhancement by modulated porous-layer coating: Theory and experiment,” Int. J. Heat Mass Transfer 44, 4287–4311 (2001). https://doi.org/10.1016/S0017-9310(01)00084-9

    Article  Google Scholar 

  84. D. A. Shvetsov, A. N. Pavlenko, and V. I. Zhukov, “Influence of the morphology of a capillary-porous coating on the evaporation and boiling of a thin liquid layer,” in Technologies. Innovations: Collection of Scientific Papers (Nauka, Novosibirsk, 2021), pp. 104–108 [in Russian].

    Google Scholar 

Download references

Funding

The study was performed under the state assignment (no. 121031800216-1) of the Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, and with the financial support of a megagrant (no. 075-15-2021-575) of the Ministry of Science and Higher Education of the Russian Federation under supervision of leading scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pavlenko.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, A.N., Zhukov, V.I. & Shvetsov, D.A. Crisis Phenomena and Heat-Transfer Enhancement during Boling and Evaporation in Horizontal Liquid Films (Review). Therm. Eng. 69, 886–901 (2022). https://doi.org/10.1134/S0040601522110076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601522110076

Keywords:

Navigation