Log in

The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models

  • Nuclear Power Plants
  • Published:
Thermal Engineering Aims and scope Submit manuscript

Abstract

The article describes the basic models included in the EUCLID/V1 integrated code intended for safety analysis of liquid metal (sodium, lead, and lead-bismuth) cooled fast reactors using fuel rods with a gas gap and pellet dioxide, mixed oxide or nitride uranium–plutonium fuel under normal operation, under anticipated operational occurrences and accident conditions by carrying out interconnected thermal–hydraulic, neutronics, and thermal–mechanical calculations. Information about the Russian and foreign analogs of the EUCLID/V1 integrated code is given. Modeled objects, equation systems in differential form solved in each module of the EUCLID/V1 integrated code (the thermal–hydraulic, neutronics, fuel rod analysis module, and the burnup and decay heat calculation modules), the main calculated quantities, and also the limitations on application of the code are presented. The article also gives data on the scope of functions performed by the integrated code’s thermal–hydraulic module, using which it is possible to describe both one- and twophase processes occurring in the coolant. It is shown that, owing to the availability of the fuel rod analysis module in the integrated code, it becomes possible to estimate the performance of fuel rods in different regimes of the reactor operation. It is also shown that the models implemented in the code for calculating neutron-physical processes make it possible to take into account the neutron field distribution over the fuel assembly cross section as well as other features important for the safety assessment of fast reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The White Book of Nuclear Power Generation Ed. by E. O. Adamov, (NIKIET, Moscow, 2001) [in Russian].

    Google Scholar 

  2. P. N. Alekseev, V. G. Asmolov, A. Yu. Gagarinskii, N. E. Kukharkin, Yu. M. Semchenkov, V. A. Sidorenko, S. A. Subbotin, V. F. Tsibul’skii, and Ya. I. Shtrombakh, “On a nuclear power strategy of Russia to 2050,” At. Energy 111, 239–251 (2011).

    Article  Google Scholar 

  3. L. A. Bol’shov, N. A. Mosunova, V. F. Strizhov, and O. V. Shmidt, “Next generation design codes for a new technological platform for nuclear power,” At. Energy 120, 369–379 (2016).

    Article  Google Scholar 

  4. I. G. Kudashov, E. V. Usov, A. A. Butov, I. S. Vozhakov, N. A. Pribaturin, S. I. Lezhnin, M. E. Kuznetsova, Yu. Yu. Vinogradova, R. V. Chalyi, V. N. Semenov, A. L. Fokin, and N. I. Ryzhov, “Heat-exchange models in the SOKRAT-BN Code for calculating sodium boiling in geometrically different channels,” At. Energy 117, 323–328 (2014).

    Article  Google Scholar 

  5. T. Suzuki, Y. Tobita, K. Kawada, H. Tagami, J. Sogabe, K. Matsuba, K. Ito, and H. Ohshima, “A preliminary evaluation of unprotected loss-of-flow accident for a prototype fast-breeder reactor,” Nucl. Eng. Technol. 47, 240–252 (2015).

    Article  Google Scholar 

  6. Y. Tobita, Sa. Kondo, H. Yamano, K. Morita, W. Maschek, P. Coste, and T. Cadiou, “The development of SIMMER-III, an advanced computer program for LMFR safety analysis, and its application to sodium experiments,” Nucl. Technol. 153, 245–255 (2006).

    Article  Google Scholar 

  7. W. Maschek, A. Rineiski, T. Suzuki, X. Chen, Mg. Mori, and S. Wang, “The SIMMER-III and SIMMER-IV code family: 2-D and 3-D mechanistic simulation tools for reactor transients and accidents” (2003). https://www.researchgate.net/publication/228363832_.

    Google Scholar 

  8. E. N. Danilova, F. Yu. Kashevarov, A. G. Muratov, and V. V. Tyukov, “Development of DINAR software package for the safety case of RU BREST-OD-300,” in NIKIET Annual Report—2011: Collection of Papers, Ed. by E. O. Adamov (NIKIET, Moscow, 2011), pp. 100–102 [in Russian].

    Google Scholar 

  9. Yu. M. Ashurko, A. V. Volkov, and K. F. Raskach, “Development of program modules with space-time kinetics for calculating unanticipated accidents in fast reactors,” At. Energy 114, 77–82 (2013).

    Article  Google Scholar 

  10. Yu. M. Ashurko, A. V. Volkov, K. F. Raskach, and N. V. Solomonova, “Neutron-physical model impact on the calculation of a serious accident with sodium boiling in a fast reactor,” At. Energy 122, 217–225 (2017).

    Article  Google Scholar 

  11. V. I. Rachkov, Yu. S. Khomyakov, and Yu. E. Shvetsov, “Russian codes for safety analysis of sodium-cooled fast reactors,” At. Energy 116, 265–270 (2014).

    Article  Google Scholar 

  12. R. Li, X.-N. Chen, A. Rineiski, and V. Moreau, “Studies of fuel dispersion after pin failure: Analysis of assumed blockage accidents for the MYRRHA–FASTEF critical core,” Ann. Nucl. Energy 79, 31–42 (2015).

    Article  Google Scholar 

  13. N. Girault, L. Cloarec, L. Laborde, L. Lebel, L. Herranz, G. Bandini, S. Perez-Martin, L. Ammirabile, C. Spengler, M. Buck, B. Fargès, and S. Poumerouly, “Main outcomes from the JASMIN project: development and validation of ASTEC-Na for severe accident simulation in Na-cooled fast reactors,” in Proc. Int. Conf. on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17). Yekaterinburg, June 26–29, 2017, IAEACN245-324.

  14. R. Bonifetto, S. Dulla, P. Ravetto, L. Savoldi Richard, and R. Zanino, “A full-core coupled neutronic/thermal-hydraulic code for the modeling of lead-cooled nuclear fast reactors,” Nucl. Eng. Des. 261, 85–94 (2013).

    Article  Google Scholar 

  15. R. Bonifetto, D. Caron, S. Dulla, V. Mascolino, P.Ravetto, L. Savoldi, D. Valerio, and R. Zanino, “Advances in the development of the code FRENETIC for the coupled dynamics of lead-cooled reactors,” CIRTEN: CERSE-POLITO RL 1572/2015 (2015).

    Google Scholar 

  16. G. Wang, Zh. Gu, Zh. Wang, and M. **, “Verification of neutronics and thermal-hydraulics coupled simulation program NTC by the PDS-XADS transient simulation,” Prog. Nucl. Energy 85, 659–667 (2015).

    Article  Google Scholar 

  17. Z. Gu, G. Wang, Z. Wang, M. **, and Y. Wu, “Transient analyses on loss of heat sink and overpower transient of natural circulation LBE-cooled fast reactor,” Prog. Nucl. Energy 81, 60–66 (2015).

    Article  Google Scholar 

  18. T. Ishizu, H. Endo, I. Tatewaki, T. Yamamoto, and N. Shirakawa, “Development of integrated core disruptive accident analysis code for FBR–ASTERIAFBR,” in Proc. Int. Congr. on Advances in Nuclear Power Plants (ICAPP12), Chicago, IL, June 24–28, 2012 (Curran, Red Hook, NY, 2012).

    Google Scholar 

  19. T. Okawa, I. Tatewaki, T. Ishizu, H. Endo, Y. Tsuboi, and H. Saitou, “Fuel behavior analysis code FEMAXIFBR development and validation for core disruptive accident,” Prog. Nucl. Energy 82, 80–85 (2015).

    Article  Google Scholar 

  20. T. Sofu and J. W. Thomas, “U.S. DOE NEAMS program and SHARP multi-physics toolkit for high-fidelity SFR core design and analysis,” in Proc. Int. Conf. on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17). Yekaterinburg, June 26–29, 2017, IAEACN245-054.

  21. V. M. Alipchenkov, A. M. Anfimov, D. A. Afremov, V. S. Gorbunov, Yu. A. Zeigarnik, A. V. Kudryavtsev, S. L. Osipov, N. A. Mosunova, V. F. Strizhov, and E. V. Usov, “Fundamentals, current state of the development of, and prospects for further improvement of the new-generation thermal-hydraulic computational HYDRA-IBRAE/LM code for simulation of fast reactor systems,” Therm. Eng. 63, 130–139 (2016). doi 10.1134/S0040601516020014

    Article  Google Scholar 

  22. Yu. V. Yudov, “A two-fluid model of unsteady circuit thermohydraulics and its numerical realization in the KORSAR computer code,” Therm. Eng. 49, 895–900 (2002).

    Google Scholar 

  23. Yu. V. Yudov, “The specifics of simulation of the hydrodynamics of stratified and annular-dispersed two-phase flow patterns in the KORSAR computer code,” Therm. Eng. 49, 909–915 (2002).

    Google Scholar 

  24. RELAP5-3D Code Manual. Volume I: Code Structure, System Models and Solution Methods, INEEL-EXT-98-00834, Revision 4.0 (2012).

  25. E. V. Usov, A. A. Butov, G. A. Dugarov, I. G. Kudashov, S. I. Lezhnin, N. A. Mosunova, and N. A. Pribaturin, “System of closing relations of a two-fluid model for the HYDRA-IBRAE/LM/V1 code for calculation of sodium boiling in channels of power equipment,” Therm. Eng. 64, 504–510 (2017). doi 10.1134/S0040601517070102

    Article  Google Scholar 

  26. E. V. Usov, N. A. Pribaturin, I. G. Kudashov, A. A. Butov, G. A. Dugarov, N. A. Mosunova, V. F. Strizhov, and E. N. Ivanov, “A step in the verification of the HYDRA-IBRAE/LM/V1 thermohydraulic code for calculating sodium coolant flow in fuel-rod assemblies,” At. Energy 118, 382–388 (2015).

    Article  Google Scholar 

  27. H. M. Kottowski and C. Savatteri, “Fundamentals of liquid metal boiling thermohydraulics,” Nucl. Eng. Des. 82, 281–304 (1984).

    Article  Google Scholar 

  28. K. Takahashi, Y. Fujii-e, and T. Suita, “Incipient boiling phenomena of sodium under forced convection by direct heating,” J. Nucl. Sci. Technol. 9, 603–612 (1972).

    Article  Google Scholar 

  29. A. I. Leonov and V. F. Prisnyakov, “Sodium overheating limit during boiling,” Teplofiz. Vys. Temp. 10, 149–152 (1972).

    Google Scholar 

  30. Yu. A. Zeigarnik and V. D. Litvinov, Boiling of Alkali Metals in Ducts (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  31. Handbook of Thermohydraulic Calculations in Nuclear Power Engineering, Ed. by P. L. Kirillov, (IzdAt, Moscow, 2010), Vol. 1 [in Russian].

    Google Scholar 

  32. RB-040-09. Design Ratio and Calculation Procedure for Hydrodynamic and Thermal Characteristics of Elements and Equipment of Water Cooling Nuclear Installations (2009). http://files.stroyinf.ru/Index2/1/4293824/4293824436.htm

  33. I. E. Idel’chik, Handbook on Hydraulic Resistances (Mashinostroenie, Moscow, 1992).

    Google Scholar 

  34. A. V. Zhukov and A. P. Sorokin, “Analysis of the fast reactors' fuel-rod bundle flow resistance,” At. Energy 60, 369–374 (1986).

    Article  Google Scholar 

  35. T. Hibiki, T. H. Lee, J. Y. Lee, and M. Ishii, “Interfacial area concentration in boiling bubbly flow systems,” Chem. Eng. Sci. 61, 7979–7990 (2006).

    Article  Google Scholar 

  36. Yu. V. Yudov, S. N. Volkova, and Yu. A. Migrov, “The closing relationships of the thermohydraulic model of the KORSAR computer code,” Therm. Eng. 49, 901–908 (2002).

    Google Scholar 

  37. Yu. V. Yudov, Candidate’s Dissertation in Engineering (A. P. Alexandrov Scientific and Research Inst., Sosnovyi Bor, 2001).

    Google Scholar 

  38. Yu. A. Migrov, Doctoral Dissertation in Engineering (A. P. Alexandrov Scientific and Research Inst., Sosnovyi Bor, 2011).

    Google Scholar 

  39. Yu. G. Verbitskii, Candidate’s Dissertation in Engineering (A. P. Alexandrov Scientific and Research Inst., Sosnovyi Bor, 2011).

    Google Scholar 

  40. V. M. Alipchenkov, V. V. Belikov, A. V. Davydov, D. A. Emel’yanov, and N. A. Mosunova, “Recommendations on selecting the closing relations for calculating friction pressure drop in the loops of nuclear power stations equipped with VVER reactors,” Therm. Eng. 60, 331–337 (2013). doi 10.1134/S0040601513050029

    Article  Google Scholar 

  41. V. I. Tarasov, “Modeling the diffusion yield of radioactive fission products from uranium dioxide fuel,” At. Energy 106, 395–408 (2009).

    Article  Google Scholar 

  42. M. S. Veshchunov, V. D. Ozrin, V. E. Shestak, V. I. Tarasov, R. Dubourg, and G. Nicaise, “Development of the mechanistic code MFPR for modelling fission-product release from irradiated UO2 fuel,” Nucl. Eng. Des. 236, 179–200 (2006).

    Article  Google Scholar 

  43. M. S. Veshchunov, V. D. Ozrin, V. E. Shestak, V. I. Tarasov, and R. Dubourg, “Mechanistic modelling of urania fuel evolution and fission product migration during irradiation and heating,” J. Nucl. Mater. 362, 327–335 (2007).

    Article  Google Scholar 

  44. V. D. Ozrin, “A model for evolution of oxygen potential and stoichiometry deviation in irradiated UO2 fuel,” J. Nucl. Mater. 419, 371–377 (2011).

    Article  Google Scholar 

  45. V. I. Tarasov and M. S. Veshchunov, “Models for fuel porosity evolution in UO2 under various regimes of reactor operation,” Nucl. Eng. Des. 272, 65–83 (2014).

    Article  Google Scholar 

  46. M. S. Veshchunov and V. I. Tarasov, “An advanced model for grain face diffusion transport in irradiated UO2 fuel. Part 1: Model formulation,” J. Nucl. Mater. 392, 78–84 (2009).

    Article  Google Scholar 

  47. V. I. Tarasov and M. S. Veshchunov, “An advanced model for grain face diffusion transport in irradiated UO2 fuel. Part 2: Model implementation and validation,” J. Nuclear Materials. 392, 85–89 (2009).

    Article  Google Scholar 

  48. M. S. Veshchunov, “New models for UO2 fuel structure evolution under irradiation in fast reactors,” J. Nucl. Mater. 415, 96–103 (2011).

    Article  Google Scholar 

  49. J. Leclere, Y. Bibilashvili, F. Reshetnikov, S. Antipov, V. Poplavski, I. Zabudko, V. Tsykanov, A. Mayorshin, and T. Ikegami, “MOX fuel fabrication and utilization in fast reactors worldwide,” in Proc. MOX fuel cycle technologies for medium and long term deployment Symp., Vienna, May 17–21, 1999 (IAEA, Vienna, 2000), in Ser.: C&S Papers Series, No. 3/P, 49–73 (2000).

    Google Scholar 

  50. G. I. Bell and S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold, New York, 1970; Atomizdat, Moscow, 1974).

    Google Scholar 

  51. D. S. Asatryan, V. P. Bereznev, and E. F. Seleznev, “The ‘CORNER’ neutronics calculation code,” Izv. Vyssh. Uchebn. Zaved. Yad. Energ., No. 1, 136–143 (2015).

    Google Scholar 

  52. V. P. Bereznev, “Nodal SN-method for HEX-Z-geometry,” Izv. Vyssh. Uchebn. Zaved. Yad. Energ., No. 3, 56–62 (2015).

    Google Scholar 

  53. E. F. Seleznev, Kinetics of Fast Neutron Reactors (Nauka, Moscow, 2013) [in Russian].

    Google Scholar 

  54. S. V. Zabrodskaya, A. V. Ignatyuk, V. N. Koshcheev, V. N. Manokhin, M. N. Nikolaev, and V. G. Pronyaev, “ROSFOND — Russian national library of evaluated neutron data,” Vopr. At. Nauki Tekh. Ser.: Yad.-Reakt. Konstanty, No. 1–2, 3–21 (2007).

    Google Scholar 

  55. S. V. Zabrodskaya, M. N. Nikolaev, and A. M. Tsibulya, “Libraries of decay data and fission product yields in the ABBN-93 constant set,” Vopr. At. Nauki Tekh. Ser.: Yad.-Reakt. Konstanty, No. 2, 71–78 (2000).

    Google Scholar 

  56. E. V. Usov, A. A. Sorokin, V. I. Chukhno, and N. A. Mosunova, “Modeling of oxide layer formation and corrosion products coagulation and transport in lead coolant using the OXID module of the HYDRAIBRAE/LM code,” At. Energy 122, 172–177 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Mosunova.

Additional information

Original Russian Text © N.A. Mosunova, 2018, published in Teploenergetika.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosunova, N.A. The EUCLID/V1 Integrated Code for Safety Assessment of Liquid Metal Cooled Fast Reactors. Part 1: Basic Models. Therm. Eng. 65, 304–316 (2018). https://doi.org/10.1134/S0040601518050063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040601518050063

Keywords

Navigation