Log in

Simulation and Analysis of CO2 Capturing from Converter Gas Using Monoethanolamine

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Converter steelmaking is a key part of steel production, and the resulting converter gas contains a large amount of CO2. CO2 capture of converter gas can benefit the reduction of CO2 emissions in the steel industry. In this study, a post-combustion capture process based on monoethanolamine (MEA) was established in Aspen Plus, and the absorption and desorption performance of MEA on converter gas were investigated by simulation using the thermodynamic model of ELECNRTL. Increasing the depletion flow rate, temperature, and MEA concentration can help to improve the CO2 capture rate; the feed position and desorption pressure affect the CO2 desorption effect, and the best desorption effect is achieved when the feed position is the second tray, and the desorption tower pressure is 1.9 bar. The results of the study can provide a new idea for CO2 capture at the end of converter steelmaking, which is of great significance for the progress of CCUS technology in the iron and steel industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. Nocito, F, and Dibenedetto, A., Atmospheric CO2 mitigation technologies: Carbon capture utilization and storage (CCUS), Curr. Opin. Green Sustainable Chem., 2019, vol. 21, pp. 34—43. https://doi.org/10.1016/j.cogsc.2019.10.002

    Article  CAS  Google Scholar 

  2. Tun, D., The economics of CCS: Why have CCS technologies not had an international breakthrough? Renewable Sustainable Energy Rev., 2018, vol. 95, pp. 328–340. https://doi.org/10.1016/j.rser.2018.07.007

    Article  Google Scholar 

  3. Wiley, D.E., Ho, M.T., and Bustamante, A., Assessment of opportunities for CO2 capture at iron and steel mills: An australian perspective, Energy Procedia, 2011, vol. 4, pp. 2654–2661. https://doi.org/10.1016/j.egypro.2011.02.165

    Article  Google Scholar 

  4. Zhao, P. and Dong, P.L. Carbon emission cannot be ignored in future of Chinese steel industry, Iron Steel, 2018, vol. 53, no. 8, pp. 1–7. https://doi.org/10.13228/j.boyuan.issn0449-749x.20180081

    Article  CAS  Google Scholar 

  5. IEA. Iron and Steel Technology Roadmap: Towards More Sustainable Steelmaking, https://www.iea.org/ reports/iron-and-steel-technology-roadmap. Cited December 30, 2023.

  6. Cai, B., Li, Q., and Zhang, X., China Status of CO2 Capture, Utilization and Storage (CCUS), Annual Report (2021)Research on CCUS path in China., China, 2021.

  7. Wu, Y., Wan, X., Qian, Y., Jia, J., and Du, Z., Advances in carbon dioxide capture and separation technology, New Chem. Mater., 2023, vol. 51, no. 3, pp. 247—251. https://doi.org/10.19817/j.cnki.issn1006-3536.2023.03.043

    Article  Google Scholar 

  8. Zhang, X. The Application Prospects of CCUS Technologies in China under the Target of Carbon Neutrality, Sustainable Dev. Econ. Guide, 2020, vol. 12, pp. 22–24.

    MathSciNet  Google Scholar 

  9. Wang, T., Li, J., Cui, F., et al. Research progress of adsorbent for CO2 capture at low temperature, Fine Petrochem., 2015, vol. 32, no. 04, pp. 70–76.

    Google Scholar 

  10. Wu, G. and Tian, R., Research progress of carbon dioxide capture technology[J], Yunnan Chem., 2020, vol. 47, no. 04, pp. 22–23.

    Google Scholar 

  11. Wen, H., Han, W., Che, C., et al., Post-combustion carbon dioxide capture technology development and application[J]. Fine Chem., 2022, vol. 39, no. 08, pp. 1584-1595+1632.

  12. Chen, G., Analysis on affecting factors of process energy consumption in steelmaking system[J]. Steel Res., 2010, vol. 38, no. 6, pp. 44–47.

    Google Scholar 

  13. Tobiesen, F.A., Svendsen, H.F., and Mejdell, T., Modeling of blast furnace CO2 capture using amine absorbents, Ind. Eng. Chem. Res., 2007, vol. 46, no. 23, pp. 7811–7819. https://doi.org/10.1021/ie061556j

    Article  CAS  Google Scholar 

  14. Luo, Y. and Wang, C., CO2 capture and storage technology at POSCO, Korea[J], Environ. Prot. Circ. Econ., 2016, vol. 36, no. 12, pp. 29-32+66.

  15. Onoda, M., Matsuzaki, Y., Chowdhury, F.A., Yamada, H., Goto, K., and Tonomura, S., Sustainable aspects of ultimate reduction of CO2 in the steelmaking process (COURSE50 Project), Part 2: CO2 Capture, J. Sustainable Metallurgy, 2016, vol. 2, pp. 209—215. https://doi.org/10.1007/s40831-016-0067-3

    Article  Google Scholar 

  16. **, L., Qianguo, L., Hasan, M., Ming, L., Qiang, L., Jia, L., Alisa, W., Muxin, L., and Francisco, A., Assessing the economics of CO2 capture in China's iron/steel sector: A case study, Energy Procedia, 2019, vol. 158, pp. 3715—3722. https://doi.org/10.1016/j.egypro.2019.01.886

    Article  Google Scholar 

  17. Ding, H., Zheng, H., Liang, X., and Ren, L., Getting ready for carbon capture and storage in the iron and steel sector in China: Assessing the value of capture readiness, J. Cleaner Production, 2020, vol. 244, article no. 118953. https://doi.org/10.1016/j.jclepro.2019.118953

    Article  Google Scholar 

  18. Dutcher, B., Fan, M., and Russell, A.G., Amine-based CO2 capture technology development from the beginning of 2013—A Review, ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 4, pp. 2137—2148. https://doi.org/10.1021/am507465f

    Article  PubMed  CAS  Google Scholar 

  19. Hernández -Romero, I.M., Flores-Tlacuahuac, A., Nápoles-Rivera, F., Esquivel-Patiño, G.G., and García-Pardo, M.L., Multi objective optimization of the amines—CO2 capture absorption-desorption process by a non-equilibrium rate model, Chem. Eng. Res. Des., 2022, vol. 187, pp. 93–104. https://doi.org/10.1016/j.cherd.2022.08.050

    Article  CAS  Google Scholar 

  20. Arachchige, U.S.P.R. and Melaaen, M.C., Aspen Plus simulation of CO2 removal from coal and gas fired power plants, Energy Procedia, 2012, vol. 23, pp. 391–399. https://doi.org/10.1016/j.egypro.2012.06.060

    Article  CAS  Google Scholar 

  21. Plaza, J.M., Wagener, D.V., and Rochelle, G.T., Modeling CO2 capture with aqueous monoethanolamine, Int. J. Greenhouse Gas Control, 2010, vol. 4, no. 2, pp. 161–166. https://doi.org/10.1016/j.ijggc.2009.09.017

    Article  CAS  Google Scholar 

  22. Naskar, S, Jana, K, and De, S., Comparative performance study of CO2 capture with monoethyl and diethyl amines using Aspen Plus, Int. J. Emerging Technol. Adv. Eng., 2013, vol. 3, no. 3, pp. 490–497.

    Google Scholar 

  23. Pandya, J.D., Adiabatic gas absorption and strip** with chemical reaction in packed towers, Chem. Eng. Commun., 2007, vol. 19, nos. 4–6, pp. 343–361. https://doi.org/10.1080/00986448308956351

  24. Afkhamipour, M, and Mofarahi, M., Comparison of rate-based and equilibrium-stage models of a packed column for post-combustion CO2 capture using 2-amino-2-methyl-1-propanol (AMP) solution, Int. J. Greenhouse Gas Control, 2013, vol. 15, pp. 186–199. https://doi.org/10.1016/j.ijggc.2013.02.022

    Article  CAS  Google Scholar 

  25. Hüser, N., Schmitz, O., and Kenig, E.Y., A comparative study of different amine-based solvents for CO2-capture using the rate-based approach, Chem. Eng. Sci., 2016, vol. 157, pp. 221—231. https://doi.org/10.1016/j.ces.2016.06.027

    Article  CAS  Google Scholar 

  26. Zhang, W., **, X., Tu, W., Ma, Q., Mao, M., and Cui, C., Development of MEA-based CO2 phase change absorbent, Appl. Energy, 2017, vol. 195, pp. 316–323. https://doi.org/10.1016/j.apenergy.2017.03.050

    Article  ADS  CAS  Google Scholar 

  27. Luo, Q., Sun, Q., Liu, Q., Liu, S., **ao, M., Chen, M., Li, Y., Gao, H., and Liang, Z., Kinetics of CO2 absorption into ethanolamine + water + ethanol system—mechanism, role of water, and kinetic model, Chem. Eng. Sci., 2022, vol. 259, article no. 117732. https://doi.org/10.1016/j.ces.2022.117732

    Article  CAS  Google Scholar 

  28. Duan, L, Zhao, M, and Yang, Y., Integration and optimization study on the coal-fired power plant with CO2 capture using MEA, Energy, 2012, vol. 45, no. 1, pp. 107–116. https://doi.org/10.1016/j.energy.2011.12.014

    Article  CAS  Google Scholar 

  29. Dugas, R.E., Pilot plant study of carbon dioxide capture by aqueous monoethanolamine, Master Thesis, Austin: Tex. Univ., 2006.

Download references

Funding

This work was supported by Science and Technology Major Project of WuHan (2023020302020572).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quanmei Hu, Shijie Wang or Hongming Fang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Wang, S. & Fang, H. Simulation and Analysis of CO2 Capturing from Converter Gas Using Monoethanolamine. Theor Found Chem Eng 57, 1524–1533 (2023). https://doi.org/10.1134/S0040579523330035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523330035

Keywords:

Navigation