Log in

Robustness Analysis of Chemical Coupling Network Based on Asymmetric Dependent Network Model

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The failure of one node may cause the cascade failure, resulting in the failure of the chemical whole system. Robustness analysis of network is an effective means to prevent cascade failure. When analyzing robustness, predecessors only considered single chemical complex network, such as chemical material network and control system network. However, there is coupling between different networks. Therefore, this paper considers the coupling between networks, and a robustness analysis model of asymmetric chemical coupling network based on asymmetric dependent network model is proposed. In this paper, seven coupling dependency and two connection modes are considered, and the influence of coupling dependence and node connection modes on the robustness of network is explored. The results of the case show that the model is feasible and can well analyze the network robustness of chemical process under two types of network coupling conditions, which provides a theoretical basis for avoiding cascade failure propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Wang, Z., Hu, Y., Dong, R., Jia X., and Wang, F., Determination of the risk propagation path of cascading faults in chemical material networks based on complex networks, Can. J. Chem. Eng., 2021, vol. 99, pp. 1–11. https://doi.org/10.1002/cjce.24011

    Article  ADS  CAS  Google Scholar 

  2. Wang, Z., Dong, R., Dong, Y., Li, H., Liu, R., Hu, Y., Jia, X., and Wang, F., Controllability robustness of heat exchanger network based on complex network theory, Asia-Pac. J. Chem. Eng., 2021, vol. 16, no. 6, article no. e2711. https://doi.org/10.1002/apj.2711

    Article  CAS  Google Scholar 

  3. Yang, W.Q., Chang, K., Zhang, C.S., Qi, Z, Yang, H, and Li, T., Network safetydesign of DCS system for large-scale coal chemistry enterprise, Instrumentation., 2019, vol. 26, no. 6, pp. 14–16.

    Google Scholar 

  4. Wang, Y., **, F.L., and Lu, M.X., Research on network security solution for petroleum industrial control system, Net. Inf. Sec., 2020, vol. 39, no. 10, pp. 38–43.

    Google Scholar 

  5. Wang, S., Yang, Y., Sun, L., Li, X., Li, Y., and Guo, K., Controllability robustness against cascading failure for complex logistic network based on dynamic cascading failure model, IEEE Access, 2020, vol. 8, pp. 127450–127461. https://doi.org/10.1109/ACCESS.2020.3008476

    Article  Google Scholar 

  6. Dong, R., Wang, Z., Liu, R., Li, H., Jia, X., and Wang, F., Robustness analysis of chemical process systems based on complex network non-linear load capacity model, Can. J. Chem. Eng., 2023, vol. 101, no. 2, pp. 953–966. https://doi.org/10.1002/cjce.24427

    Article  CAS  Google Scholar 

  7. Bobbio, A., Bonanni, G., Ciancamerla, E., Clemente, R., Iacomini, A., Minichino, M., Scarlatti, A., Terruggia, R., and Zendri, E., Unavailability of critical SCADA communication links interconnecting a power grid and a Telco network, Reliab. Eng. Syst. Saf., 2010, vol. 95, no. 12, pp. 1345–1357. https://doi.org/10.1016/j.ress.2010.06.011

    Article  Google Scholar 

  8. Vespignani, A., The fragility of interdependency, Nature, 2010, vol. 464, no. 7291, pp. 984–985. https://doi.org/10.1038/464984a

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., and Havlin, S., Catastrophic cascade of failures in interdependent networks, Nature, 2010, vol. 464, no. 7291, pp. 1025–1028. https://doi.org/10.1038/nature08932

    Article  ADS  PubMed  CAS  Google Scholar 

  10. Hu, P., Fan, W., and Mei, S., Identifying node importance in complex networks, Physica A., 2015, vol. 429, pp. 169–176. https://doi.org/10.1016/j.physa.2015.02.002

    Article  ADS  Google Scholar 

  11. Shekhtman, L.M., Danziger, M.M., and Havlin, S., Recent advances on failure and recovery in networks of networks, Chaos, Solitons Fractals, 2016, vol. 90, pp. 28–36. https://doi.org/10.1016/j.chaos.2016.02.002

    Article  ADS  Google Scholar 

  12. Cheng, Z., Cao, J.D., and Hayat, T., Cascade of failures in interdependent networks with different average degree, Int. J. Mod. Phys. C., 2013, vol. 25, no. 05. https://doi.org/10.1142/S0129183114400063

  13. Ji, X.P., Wang, B., Liu, D., Chen, G., Tang, F., Wei, D., and Tu L., Improving interdependent networks robustness by adding connectivity links, Physica A., 2016, vol. 444, pp. 9–19. https://doi.org/10.1016/j.physa.2015.10.010

    Article  ADS  Google Scholar 

  14. Parshani, R., Buldyrev, S.V., and Havlin, S., Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition, Phys. Rev. Lett., 2010, vol. 105, no. 4, article no. 048701. https://doi.org/10.1103/PhysRevLett.105.048701

    Article  ADS  PubMed  CAS  Google Scholar 

  15. Liu, L.Z., Wang, Y.H., and Gao, Z.L., Tracking control for the connection relationships of discrete-time complex dynamical network associated with the controlled nodes, Int. J. Control Autom. Syst., 2019, vol. 17, no. 9, pp. 2252–2260. https://doi.org/10.1007/s12555-018-0928-6

    Article  Google Scholar 

  16. Gao, Y., Chen, S., Zhou, J., Zhang, J., and Stanley, H.E., Multiple phase transition in the non-symmetrical interdependent networks, Physica A., 2020, vol. 556, article no. 124822. https://doi.org/10.1016/j.physa.2020.124822

    Article  MathSciNet  Google Scholar 

  17. Zhang, H., Zhou, J., Zou, Y., Tang, M., **ao, G., and Stanley, H.E., Asymmetric interdependent networks with multiple-dependence relation, Phys. Rev. E, 2020, vol. 101, no. 2, article no. 022314, pp. 1–15. https://doi.org/10.1103/PhysRevE.101.022314

  18. Wan, Y. and Han, H., Cascading failures of asymmetric dependent networks under different links, Appl. Res. Comput., 2019, vol. 36, no. 5, pp. 1311–1314, 1353. https://doi.org/10.19734/j.issn.1001-3695.2017.11.0785

    Article  Google Scholar 

  19. Shao, J., Buldyrev, S.V., Havlin, S., and Stanley, H.E., Cascade of failures in coupled network systems with multiple support-dependence relations, Phys. Rev. E, 2011, vol. 83, no. 3, article no. 036116. https://doi.org/10.1103/PhysRevE.83.036116

    Article  ADS  MathSciNet  CAS  Google Scholar 

  20. Cheng, Z. and Cao, J., Cascade of failures in interdependent networks coupled by different type networks, Physica A, 2015, vol. 430, pp. 193–200. https://doi.org/10.1016/j.physa.2015.02.090

    Article  ADS  Google Scholar 

  21. Wang, J., Jiang, C., and Qian, J., Robustness of interdependent networks with different link patterns against cascading failures, Physica A., 2014, vol. 393, pp. 535–541. https://doi.org/10.1016/j.physa.2013.08.031

    Article  ADS  Google Scholar 

  22. Chen, Z., Du, W.-B., Cao, X.-B., and Zhou, X.-L., Cascading failure of interdependent networks with different coupling preference under targeted attack, Chaos, Solitons Fractals., 2015, vol. 80, pp. 7–12. https://doi.org/10.1016/j.chaos.2015.03.005

    Article  ADS  MathSciNet  Google Scholar 

  23. Gao, Y.-L. and Chen, S.M., A global homogenizing coupled pattern of interdependent networks, Acta Phys. Sin., 2016, vol. 65, no. 14, article no. 148901, pp. 1–8. https://doi.org/10.7498/aps.65.148901

  24. Xue, W., Li, H., Ali, R., and Rehman, R.U., Knowledge map** of corporate financial performance research: A visual analysis using cite space and Ucinet, Sustainability, 2020, vol. 12, no. 9, article no. 3554, pp. 1–21. https://doi.org/10.3390/su12093554

  25. Li, C.D., Li, W.B., Cao, C.J., and Wang, Y., Robustness analysis of dependent network facing cascade faults, J. Syst. Simul., 2019, vol. 31, no. 3, pp. 538–548.

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Wang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Wang, Z., **e, T. et al. Robustness Analysis of Chemical Coupling Network Based on Asymmetric Dependent Network Model. Theor Found Chem Eng 57, 1512–1523 (2023). https://doi.org/10.1134/S0040579523330023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523330023

Keywords:

Navigation