Log in

Vibratory Mixing Devices: Constructions and Development Trends

  • PROCESSES AND APPARATUSES OF CHEMICAL TECHNOLOGY
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Constructions with vibratory mixing devices designed for processing liquids, suspensions, and gas–liquid dispersions are reviewed analytically. Various design schemes of such devices are discussed, the design features of the working bodies are described, and various design options for vibration drives and equipment operating modes are examined. More than 170 relevant patent documents published within the last 70 years are identified to determine the development trend of the technology. Analysis of the global development trends suggests that inventors are interested in works performed to improve the current types of equipment and to develop new ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. Strek, F., Mieszanie i Mieszalniki, Warsawa: WNT, 1971.

  2. Oldshue, J.Y., Fluid Mixing Technology, New York: McGraw-Hill, 1983.

    Google Scholar 

  3. Budtov, V.P. and Konsetov, V.V., Teplomassoperenos v polimerizatsionnykh protsessakh (Heat- and Mass Transfer in Polymerization Processes), Leningrad: Khimiy-a, 1983.

  4. Sterbacek, Z. and Tausk, P. Mixing in the Chemical Industry, Oxford: Pergamon Press, 1965.

    Google Scholar 

  5. Braginskii, L.N., Begachev, V.I., and Barabash, V.M., Peremeshivanie v zhidkikh sredakh: fizicheskie osnovy i inzhenernye metody rascheta (Mixing in Liquid Media: Physical Foundations and Engineering Methods of Estimation), Leningrad: Khimiya, 1984.

  6. Handbool of Industrial Mixing: Science and Practice, Paul, E.L., Atiemo-Obeng, V.A., and Kresta, S.M., Eds., Hoboken, NY: Wiley, 2004.

  7. Holland, F.A. and Chapman, F.S., Liquid Mixing and Processing in Stirred Tanks, New York: Reinhold, 1966.

    Google Scholar 

  8. GOST (State Standard) 22577–77: Mixing Devices for Liquid Compositions. Terms and Definitions, 1977.

  9. ATC (Album of Typical Constructions) 24.201.17–90: Mixers. Types, Parameters, Construction, Basic Dimensions and Technical Requirements.1990.

  10. Bogdanov, V.V., Khristoforov, E.I., and Klotsung, B.A., Effektivnye maloob’emnye smesiteli (Effective Low-Volime Mixers), Leningrad: Khimiya, 1989.

  11. Processy i apparaty khimicheskoi tekhnologii. Obshchii kurs: Uchebnik v 2 knigakh. Kniga 1 (Processes and Apparatus of Chemical Technology. General Course: Textbook. In 2 books. Book 1), Ainshtein, V.G. Ed., S.-Peterb.: Lan’, 2019.

  12. Sal′kova, A.G. and Loboda, P.P., Mass exchange in an apparatus with vibro-mixing device, in Trudy VI vsesoyuznoi konferentsii “Teoriya i praktika peremeshivaniya v zhidkikh sredakh″ (Proc. VI All-Union Conf. ″Theory and Practice of Mixing in Liquid Media″), Moscow: NIITEKhIM, 1990, p. 89.

  13. Cherkasov, E.V., Pimenov, Yu.A., Mazur, A.S., Efimova, N.L., Ulybin, V.B., and Ukraintseva, T.V., Preparation of stable water-fuel emulsions based on oil-sludge using vibro-cavitation technology, Izv. S.-Peterb. Gos. Tekhnol. Inst., 2013, no. 18, pp. 68–70.

  14. Yatsun, S.F., Mishchenko, V.Ya., and Mishchenko, E.V., Application of vibrational effect in mass-transfer processes, Izv. Vyssh. Uchebn. Zaved., Sev.-Kavk. Reg.,Tekh. Nauki, 2008, no. 5, pp. 99–101.

  15. Korobchuk, M.V, and Verigin, A.N., To the question of terminology used in the construction description of the vibrational mixing devices, Trudy mezhdunarodnoi nauchno-prakticheskoi konferentsiiPrioritetnye napravleniya innovatsionnoi deyatel’nosti v promyshlennosti″ (Proc. Int. Sci.-Pract. Conf. ″Priority Tendencies of Innovation Activity in Industry″), Kazan, 2021, pp. 86–89.

  16. CH Patent 278280, 1948.

  17. USSR Inventor′s Certificate no. 2321416, Byull. Izobret., 1977, no. 3.

  18. Gidrodinamicheskie i teplomassoobmennye protsesses v khimicheskoi apparature (Hydrodynamic and Heat- and Mass-Transfer Processes in Chemical Equipment), Konsetov, V.V. and Pavlushenko, I.S., Eds., Leningrad: Mashinostroenie, 1967.

    Google Scholar 

  19. Panovko, G.Ya., Dinamika vibratsionnykh tekhnologicheskikh protsessov (Dynamics of Vibrational Technological Processes), Izhevsk: NITs ″Regulyarnaya i khaoticheskaya dinamika″, Inst. Komp′yuternykh. Issled., 2006.

  20. Khvingiya, M.V. and Ninoshvili, B.I., Elektromagnitnye vibratory s reguliruemoi sobstvennoi chastotoi (Electromagnetic Vibrators with Adjustable Own Frequency), Tbilisi: Metsniereba, 1971.

  21. USSR Inventor′s Certificate no. 233616, Byull. Izobret., 1966, no. 3.

  22. Vasil′tsov, E.A. and Ushakov, V.G., Apparaty dlya peremeshivaniya zhidkikh sred (Devices for Mixing Liquid Media), Leningrad: Mashinostroenie, 1979.

  23. RF Patent 122909, 2012.

  24. RF Patent 2257259, 2005.

  25. Khvingiya, M.V., Dinamika i prochnost′ vibratsionnykh mashin s elektromagnitnym vozbuzhdeniem (The Dynamics and Strength of Vibrational Machines with Electromagnetic Excitation), Moscow: Mashinostroenie, 1980.

  26. Genkin, M.D., Rusakov, A.M., and Yablonskii, V.V., Elektrodinamicheskie vibratory (Electrodynamic Vibrators), Moscow: Mashinostroenie, 1975.

  27. Aksel′rud, G.A. and Molchanov, A.D., Rastvorenie tverdykh veshchestv (Dissolution of Solids), Moscow: Khimiya, 1977.

  28. Korobchuk, M.V. and Verigin, A.N., Review on modern vibrational mixers for bulk materials and the trends of their development, Yuzhno-Sib. Nauchn. Vestn., 2020, no. 4, pp. 32–45.

  29. Dr. Mueller AG Official Website. https://drm-filters.com. Cited January 18, 2021.

  30. Rütten Engineering Ltd. Official Website. https://www.rutten.com / index.html. Cited January 18, 2021.

  31. Korobchuk, M.V., Practical recommendations for working with information and patent bases in the preparation of the branch and retrospective reviews, Voprosy Ustoich. Razvit. O-va, 2020, no. 9, http://www.nauka20-35.ru. Cited October 5, 2023.

  32. The Federal Institute of Industrial Ownership. Official Website. https://www.fips.ru/. Cited February 01, 2023.

  33. The USSR Base of Patents. Official Website. https://patents.su/. Cited February 01, 2021.

  34. The European Patent Office (EPO) Base of Patents. Official Website. https:// worldwide.espacenet.com/. Cited February 01, 2023.

  35. The United States Patent and Trademark Office (USPTO) Official Website. https://www.uspto.gov/. Cited February 01, 2021.

  36. The Belarus Base of Patents. Official Website. https://www.ncip.by/. Cited February 01, 2021.

  37. The Ukraine Base of Patents. Official Website. https://ukrpatent.org/. Cited February 01, 2021.

  38. The Kazakhstan Base of Patents. Official Website. https://kazpatent. kz/. Cited February 01, 2021.

  39. The Google Patent Official Website. https://patents.google.com/. Cited February 01, 2021.

  40. The Information-Analytical Portal E-Library. Official Website. https://www.elibrary.ru/. Cited February 01, 2021.

  41. The Searching-Scientific System ″Google Scholar″ Official Website. https://scholar.google.com/. Cited February 01, 2021.

  42. The ScienceDirect Full-Text Data Base Official Website. http://www.elsevierscience.ru/. Cited February 01, 2021.

  43. The Searching-Scientific System ″Scirus″ Official Website. http://scirus.com/. Cited February 24, 2023.

  44. The ″Scopus″ Polythematic Referative Base Official Website. http://www.scopus.com/. Cited February24, 2013.

  45. The ″Web of Science″ Polythematic Referative Base Official Website. http://wokinfo.com/products_tools/ multidisciplinary/webofscience/. Cited February 24, 2021.

  46. US Patent 1623987, 1927.

  47. Korobchuk, M.V., Verigin, A.N., and Dzhangiryan, V.G., Vibrational processing multicomponent energy-saturated materials: New opportunities, Vestn. Tekhnol. Univ., 2019, vol. 22, no. 11, pp. 74–80.

    Google Scholar 

  48. Tsyfanskii, S.L., Beresnevich, V.I., and Oks, A.B., Nelineinye i parametricheskie kolebaniya vibratsionnykh mashin tekhnologicheskogo naznacheniya (Nonlinear and Parametric Vibrations of Technological Vibrational Machines), Riga: Zinatne, 1991.

  49. Korobchuk, M.V. and Verigin, A.N., Application principles of wave mechanics and the effect of nonlinear oscillations in chemical technology, Trudy XXVIII mezhdunarodnoi nauchno-prakticheskoi konferentsii “Advances in Science and Technology” (Proc. XXVIII Int. Sci. Pract. Conf. “Advances in Science and Technology”), Moscow, 2020, part 1, pp. 100–101.

  50. Andrievskii, B.R., Blekhman, I.I.,Bortsov, Yu.A., Gavrilov, S.V., Konoplev, V.A., Lavrov, B.P., Polyakov, N.D., Tomchina, O.P., Fradkov, A.L., and Shestakov, V.M., Upravlenie mekhatronnymi vibratsionnymi ustanovkami (Operating Mechatron Vibrational Installations), Blekhman, I.I. and Fradkov, A.L., Eds., S.-Peterb.: Nauka, 2001.

  51. Korobchuk, M.V. and Verigin, A.N., Using software and electronic components in relation to the design of mechatron vibration installations, Trudy IV Mezhdunarodnoi naucno-prakticheskoi konferentsii “Proizvodstvennye tekhnologii budushchego ot sozdaniya k vnedreniyu” (“Production Technologies of the Future: From Creation to Implementation”: Proc. IV Int. Sci.-Pract. Conf.), Komsomol’sk-on-Amur, 2021, pp. 212–216.

  52. Mishchenko, E.V. and Mishchenko, V.Ya., New approaches to designing vibratory technological technique in food and processing industry, Vestn. Bryansk Tekhnol. Univ., 2016, no. 4, pp. 116–121. https://doi.org/10.12737/23190

  53. CH Patent 286342, 1948.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. V. Korobchuk or A. N. Verigin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Tulyabaew

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobchuk, M.V., Verigin, A.N. Vibratory Mixing Devices: Constructions and Development Trends. Theor Found Chem Eng 57, 1230–1241 (2023). https://doi.org/10.1134/S0040579523310032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523310032

Keywords:

Navigation