Log in

Extraction of Ti(IV) Ions from Chloride Solutions with the Aliquat 336–Menthol Hydrophobic Deep Eutectic Solvent

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrometallurgical methods remain among the most promising for lithium-ion battery recycling, and liquid–liquid extraction is the key step in separating the complex mixture of elements that make up the anode and cathode. The development and complication of the composition of batteries, in particular, the active production of lithium titanate anodes, requires additional research on extraction. The work studied in detail the extraction of Ti(IV) ions with the Aliquat 336–menthol hydrophobic deep eutectic solvent, which was previously successfully used to separate elements from leaching solutions of NMC-type cathodes (LiNiMnCoO2). Data were obtained on the extraction of titanium(IV) ions with varying acidity of the medium, concentration of chloride ions, and concentration of the extractant in the deep eutectic solvent. Based on these data, a mechanism for the extraction of titanium(IV) ions was proposed. Finally, a system for efficient extractant regeneration was proposed. The result of this work can be used to create an extraction scheme for separating leaching solutions of lithium-ion batteries with a lithium titanate anode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Mohr, M., Peters, J.F., Baumann, M., and Weil, M., Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes, J. Ind. Ecol., 2020, vol. 24, no. 6, pp. 1310–1322. https://doi.org/10.1111/jiec.13021

    Article  CAS  Google Scholar 

  2. Zeng, X., Li, J., and Singh, N., Recycling of spent lithium-ion battery: A critical review, Crit. Rev. Environ. Sci. Technol., 2014, vol. 44, no. 10, pp. 1129–1165. https://doi.org/10.1080/10643389.2013.763578

    Article  CAS  Google Scholar 

  3. Winslow, K.M., Laux, S.J., and Townsend, T.G., A review on the growing concern and potential management strategies of waste lithium-ion batteries, Resour., Conserv. Recycl., 2018, vol. 129, pp. 263–277. https://doi.org/10.1016/j.resconrec.2017.11.001

    Article  Google Scholar 

  4. Vaalma, C., Buchholz, D., Weil, M., and Passerini, S.A., Cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater., 2018, vol. 3, no. 4, article no. 18013. https://doi.org/10.1038/natrevmats.2018.13

    Article  ADS  Google Scholar 

  5. Ferg, E.E., Schuldt, F., and Schmidt, J., The challenges of a Li-ion starter lighting and ignition battery: A review from cradle to grave, J. Power Sources, 2019, vol. 423, pp. 380–403. https://doi.org/10.1016/j.jpowsour.2019.03.063

    Article  ADS  CAS  Google Scholar 

  6. Kumar, B., Srivastava, R.R., and Barik, S.P., Hydrometallurgical recycling of lithium-titanate anode batteries: Leaching kinetics and mechanisms, and life cycle impact assessment, Miner. Eng., 2023, vol. 202, article no. 108289. https://doi.org/10.1016/j.mineng.2023.108289

    Article  CAS  Google Scholar 

  7. Barik, S.P., Prabaharan, G., and Kumar, L., Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study, J. Cleaner Prod., 2017, vol. 147, pp. 37–43, https://doi.org/10.1016/j.jclepro.2017.01.095

    Article  CAS  Google Scholar 

  8. Barik, S.P., Prabaharan, G., and Kumar, B., An innovative approach to recover the metal values from spent lithium-ion batteries, Waste Manage., 2016, vol. 51, pp. 222–226. https://doi.org/10.1016/j.wasman.2015.11.004

    Article  CAS  Google Scholar 

  9. Gao, W., Song, J., Cao, H., Lin, X., Zhang, X., Zheng, X., Zhang, Y., and Sun, Z., Selective recovery of valuable metals from spent lithium-ion batteries—Process development and kinetics evaluation, J. Cleaner Prod., 2018, vol. 178, pp. 833–845. https://doi.org/10.1016/j.jclepro.2018.01.040

    Article  CAS  Google Scholar 

  10. Cao, J. and Su, E. Hydrophobic deep eutectic solvents: The new generation of green solvents for diversified and colorful applications in green chemistry, J. Cleaner Prod., 2021, vol. 314, article no. 127965.https://doi.org/10.1016/j.jclepro.2021.127965

    Article  CAS  Google Scholar 

  11. Van Osch, D.J.G.P., Zubeir, L.F., van den Bruinhorst, A., da Rocha, M.A.A., and Kroon, M.C., Hydrophobic deep eutectic solvents as water-immiscible extractants, Green Chem., 2015, vol. 17, no. 9, pp. 4518–4521. https://doi.org/10.1039/C5GC01451D

    Article  CAS  Google Scholar 

  12. Milevskii, N.A., Zinov’eva, I.V., Kozhevnikova, A.V., Zakhodyaeva, Y.A., and Voshkin, A.A., Sm/Co magnetic materials: A recycling strategy using modifiable hydrophobic deep eutectic solvents based on trioctylphosphine oxide, Int. J. Mol. Sci., 2023, vol. 24, article no. 14032, pp. 1–15. https://doi.org/10.3390/ijms241814032

  13. Xue, K., Fan, D., Wang, X., Dong, Z., Zhu, Z., Cui, P., Meng, F., Wang, Y., and Qi, J., Lithium extraction from aqueous medium using hydrophobic deep eutectic solvents, J. Environ. Chem. Eng., 2023, vol. 11, no. 5, article no. 110490. https://doi.org/10.1016/j.jece.2023.110490

    Article  CAS  Google Scholar 

  14. Zinov’eva, I.V., Kozhevnikova, A.V., Milevskii, N.A., Zakhodyaeva, Yu.A., and Voshkin, A.A., Extraction of Cu(II), Ni(II), and Al(III) with the deep eutectic solvent D2EHPA/menthol, Theor. Found. Chem. Eng., 2022, vol. 56, no. 2, pp. 221–229. https://doi.org/10.1134/S0040579522020178

  15. Zhu, Z., Zhang, W., and Cheng, C.Y., A literature review of titanium solvent extraction in chloride media, Hydrometallurgy, 2011, vol. 105, nos. 3–4, pp. 304–313. https://doi.org/10.1016/j.hydromet.2010.11.006

  16. Filiz, M. and Sayar, A.A., Extraction of titanium(IV) from aqueous hydrochloric acid solutions into Alamine 336-m-xylene mixtures, Chem. Eng. Commun., 2006, vol. 193, no. 9, pp. 1127–1141. https://doi.org/10.1080/00986440500354457

    Article  CAS  Google Scholar 

  17. Tang, W., Chen, X., Zhou, T., Duan, H., Chen, Y., and Wang, J., Recovery of Ti and Li from spent lithium titanate cathodes by a hydrometallurgical process, Hydrometallurgy, 2014, vols. 147–148, pp. 210–216.https://doi.org/10.1016/j.hydromet.2014.05.013

  18. Zhu, K., Wei, Q., Liu, K., Li, H., and Ren, X., Design and combination of magnetic ionic liquids and hydrophobic deep eutectic solvents for safer extraction of titanium: Physicochemical properties and toxicity studies, Green. Chem., 2022, vol. 24, no. 19, pp. 7481–7491. https://doi.org/10.1039/D2GC01874H

    Article  CAS  Google Scholar 

  19. Kozhevnikova, A.V., Zinov′eva, I.V., Zakhodyaeva, Y.A., Baranovskaya, V.B., and Voshkin, A.A., Application of hydrophobic deep eutectic solvents in extraction of metals from real solutions obtained by leaching cathodes from end-of-life Li-ion batteries, Processes, 2022, vol. 10, no. 12, article no. 2671, pp. 1–14. https://doi.org/10.3390/pr10122671

  20. Milevskii, N.A., Zinov’eva, I.V., Zakhodyaeva, Yu.A., and Voshkin, A.A., Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent, Hydrometallurgy, 2022, vol. 207, article no. 105777. https://doi.org/10.1016/j.hydromet.2021.105777

    Article  CAS  Google Scholar 

  21. Korostelev, P.P., Fotometricheskii i kompleksometricheskii analiz v metallurgii (Photometric and Complexometric Analysis in Metallurgy), Busev, A.I., Ed., Moscow: Metallurgiya, 1984.

    Google Scholar 

  22. Kislik, V. and Eyal, A., Acidity dependence of Ti(IV) extraction: A critical analysis, Solvent Extr. Ion Exch., 1993, vol. 11, no. 2, pp. 259–283. https://doi.org/10.1080/07366299308918155

    Article  CAS  Google Scholar 

  23. Sarangi, K., Padhan, E., Sarma, P.V.R.B., Park, K.H., and Das, R.P., Removal/recovery of hydrochloric acid using Alamine 336, Aliquat 336, TBP and Cyanex 923, Hydrometallurgy, 2006, vol. 84, nos. 3–4, pp. 125–129. https://doi.org/10.1016/j.hydromet.2006.03.063

  24. Mishra, R.K., Rout, P.C., Sarangi, K., and Nathsarma, K.C., Solvent extraction of Fe(III) from the chloride leach liquor of low grade iron ore tailings using Aliquat 336, Hydrometallurgy, 2011, vol. 108, nos. 1–2, pp. 93–99. https://doi.org/10.1016/j.hydromet.2011.03.003

  25. Good, M.L. and Bryan, S.E., Extraction of group VIII metals by long chain alkyl amines—II: Cobalt(II)–hydrochloric acid systems, J. Inorg. Nucl. Chem., 1961, vol. 20, nos. 1–2, pp. 140–146. https://doi.org/10.1016/0022-1902(61)80471-5

  26. Sarangi, K., Padhan, E., Sarma, P.V.R.B., Park, K.H., and Das, R.P., Removal/recovery of hydrochloric acid using Alamine 336, Aliquat 336, TBP and Cyanex 923, Hydrometallurgy, 2006, vol. 84, nos. 3–4, pp. 125–129. https://doi.org/10.1016/j.hydromet.2006.03.063

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 20-13-00387, https://rscf.ru/en/project/20-13-00387/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zakhodyaeva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikova, A.V., Uvarova, E.S., Lobovich, D.V. et al. Extraction of Ti(IV) Ions from Chloride Solutions with the Aliquat 336–Menthol Hydrophobic Deep Eutectic Solvent. Theor Found Chem Eng 57, 1261–1267 (2023). https://doi.org/10.1134/S004057952306012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057952306012X

Keywords:

Navigation