Log in

Effect of Hydrophobicity on Talc Grinding in Attritor Mill

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Talc, as an industrial mineral, is usually used at fine and ultrafine sizes in different applications. However, reaching the ultrafine sizes depends simultaneously on grinding conditions and the characteristics of the mineral to be ground. In this paper, the effect of talc hydrophobicity and grinding conditions in terms of grinding balls size, mill filling, grinding time, stirrer speed, and solids% on producing –45 microns in an attritor mill were studied. The change in talc particle size in dry and wet grinding modes was recorded along with monitoring the structural change by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the d50 of the ground product reaches 10 µm or less at 10 mm media size, 60 min grinding time, 385 rpm stirring speed, 40% solids, and 25% mill filling. Nevertheless, under the same conditions, dry grinding not only gives a smaller product but also has higher structural changes than wet grinding. The talc hydrophobicity leads to talc particles agglomeration in aqueous media and consequently, a part of grinding energy is consumed in agglomerates breakdown resulting in delaying not only the reach to the same size as in the dry grinding but also the crystal lattice destruction. Inevitably, the intensive grinding to ≤ –5 µm changes the talc structure drastically in both grinding modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Christidis, G. E., Makri, P., and Perdikatsis, V., Influence of grinding on the structure and colour properties of talc, bentonite and calcite white fillers, Clay Miner., 2004, vol. 39, pp. 163–175. https://doi.org/10.1180/0009855043920128

    Article  ADS  CAS  Google Scholar 

  2. Farag, R.M. and El-Midany, A.A., Aspects of talc grinding in the presence of sodium dodecyl sulfonate (SDS), J. Surfactants Deterg., 2021, vol. 24, no. 5, pp. 801–807. https://doi.org/10.1002/jsde.12504

    Article  CAS  Google Scholar 

  3. Mukherjee, D.K. and Roy, S., Effect of dry grinding on the CEC of some Indian talcs, Ind. Ceram., 1973, vol. 10, pp. 215.

    Google Scholar 

  4. Liao, J. and Senna, M., Thermal behavior of mechanically amorphized talc, Thermochim. Acta, 1992, vol. 197, no. 2, pp.295–306. https://doi.org/10.1016/0040-6031(92)85028-T

    Article  CAS  Google Scholar 

  5. Sanchez-Soto, P.J., Wiewióra, A., Avilés, M.A, Justo, A., Pérez-Maqueda, L.A., Pérez-Rodríguez, J.L., and Bylina P., Talc from Puebla de Lillo, Spain. II. Effect of dry grinding on particle size and shape, Appl. Clay Sci., 1997, vol.12, no. 4, pp. 297–312. https://doi.org/10.1016/S0169-1317(97)00013-6

    Article  CAS  Google Scholar 

  6. Cayirli, S., Dry grinding of talc in a stirred ball mill, E3S Web Conf., 2016, vol. 8, article no. 01005, pp. 1–8. doi 0 0100 8 MEC2016 5 5 https://doi.org/10.1051/3

  7. Zbik, M. and Smart, R.St.C., Influence of dry grinding on talc and kaolinite morphology: Inhibition of nano-bubble formation and improved dispersion, Miner. Eng., 2005, vol. 18, no. 9, pp. 969–976. https://doi.org/10.1016/j.mineng.2005.01.005

    Article  CAS  Google Scholar 

  8. Palaniandy, S. and Azizli, K.A.M., Mechanochemical effects on talc during fine grinding process in a jet mill, Int. J. Miner. Process., 2009, vol. 92, nos. 1–2, pp. 22–33. https://doi.org/10.1016/j.minpro.2009.02.008

  9. Jimbo, G., Chemical engineering analysis of fine grinding phenomena and process, Chem. Eng., Jpn., 1992, vol. 25, no. 2, pp. 117–127. https://doi.org/10.1252/jcej.25.117

    Article  CAS  Google Scholar 

  10. Jankovic, A., Variables affecting the fine grinding of minerals using stirred mills, Miner. Eng., 2003, vol. 16, no. 4, pp.337–345. https://doi.org/10.1016/S0892-6875(03)00007-4

    Article  CAS  Google Scholar 

  11. Schilling, R.E. and Yang, M., Attritor Grinding Mills and New Developments, Akron, OH: Union process, Inc., 2000.

  12. El-Midany, A.A., Selim, A.Q., and Ibrahim, S.S., Effect of celestite-calcite mineralogy on their separation by attrition scrubbing, Part. Sci. Technol., 2011, vol. 29, no. 3, pp. 272–284. https://doi.org/10.1080/02726351.2010.498035

    Article  CAS  Google Scholar 

  13. Aglietti, E.F., The effect of dry grinding on the structure of talc, Appl. Clay Sci., 1994, vol. 9, no. 2, pp.139–147. https://doi.org/10.1016/0169-1317(94)90033-7

    Article  CAS  Google Scholar 

  14. Yang, H., Du C., Hu, Y., **, S., Yang, W., Tang, A., and Avvakumov, E.G., Preparation of porous material from talc by mechanochemical treatment and subsequent leaching, Appl. Clay Sci., 2006, vol.31, nos. 3–4, pp.290–297. https://doi.org/10.1016/j.clay.2005.10.015

  15. Balek, V., Pérez-Maqueda, L.A., Poyato J., Černý, Z., Ramírez-Valle, V., Buntseva I.M., and Pérez-Rodríguez, J.L., Effect of grinding on thermal reactivity of ceramic clay minerals, J. Therm. Anal. Calorim., 2007, vol. 88, no. 1, pp. 87–91. https://doi.org/10.1007/s10973-006-8093-1

    Article  CAS  Google Scholar 

  16. Dellisanti, F., Valdrè, G., and Mondonico, M., Changes of the main physical and technological properties of talc due to mechanical strain, Appl. Clay Sci., 2009, vol. 42, nos. 3–4, pp. 398–404. https://doi.org/10.1016/j.clay.2008.04.002

  17. Arsoy, Z., Ersoy, B., Evcin, A., and İçduygu, M.G., Influence of dry grinding on physicochemical and surface properties of talc, Physicochem. Probl. Miner. Process., 2017, vol.53, no.1, pp.288–306. https://doi.org/10.5277/ppmp170124

    Article  CAS  Google Scholar 

  18. Farag R.M. and El-Midany, A.A., How does the SDS addition in talc grinding affect its floatability?, Part. Sci. Technol., 2022, vol.40, no.4, pp. 427–433. https://doi.org/10.1080/02726351.2021.1952666

    Article  CAS  Google Scholar 

  19. El-Bendary, A.M, Parameters affecting ultra-fine grinding of talc ore, Master’s thesis, Cairo: Cairo Univ., 2015.

  20. Silva, C.C., Pinheiro, A.G., Miranda, M.A.R., Góes, J.C., and Sombra, A.S.B., Structural properties of hydroxyapatite obtained by mechanosynthesis, Solid State Sci., 2003, vol.5, no. 4, pp. 553–558. https://doi.org/10.1016/S1293-2558(03)00035-9

    Article  ADS  CAS  Google Scholar 

  21. Bond, F.C., Grinding ball size selection, Min. Eng., 1958, pp. 592–.

  22. Rolland, C.A. and Kjos, D.M., Rod and ball mills, in Mineral Processing Plant Design, Mular, L.M. and Bhappu, R.B., Eds., New York: SME/AIME, 1980, p. 239.

    Google Scholar 

  23. Kwade, A. and Schwedes, J., Breaking characteristics of different materials and their effect on stress intensity and stress number in stirred media mills, Powder Technol., 2002, vol. 122, nos. 2–3, pp. 109–121. https://doi.org/10.1016/S0032-5910(01)00406-5

  24. Jayasundara, C.T., Yang, R.Y., Yu, A.B., and Rubenstein, J., Effects of disc rotation speed and media loading on particle flow and grinding performance in a horizontal stirred mill, Int. J. Miner. Process., 2010, vol. 96, nos. 1–4, pp. 27–35. https://doi.org/10.1016/j.minpro.2010.07.006

  25. Gao, M. W. and Forssberg, E., A study on the effect of parameters in stirred ball milling, Int. J. Miner. Process., 1993, vol. 37, nos. 1–2, pp. 45–59. https://doi.org/10.1016/0301-7516(93)90004-T

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. El-Mofty.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Mofty, S.E., El-Bendary, A.M., El-Midany, A.A. et al. Effect of Hydrophobicity on Talc Grinding in Attritor Mill. Theor Found Chem Eng 57, 1424–1430 (2023). https://doi.org/10.1134/S0040579523060039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523060039

Keywords:

Navigation